
Math 3010 § 1.
Treibergs

Final Exam Name: Practice Problems
March 30, 2018

Here are some problems soluble by methods encountered in the course. I have tried to select
problems ranging over the topics we’ve encountered. Admittedly, they were chosen because
they’re fascinating to me. As such, they may have solutions that are longer than the questions
you might expect on an exam. But some of them are samples of homework problems. Here are
a few of my references.
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1. Use Fermat’s method of Adequality to find x > 0 where f(x) has a local maximum, where

f(x) =

√
x

1 + x2
.

Fermat assumes that x and x + E bracket the local max and have equal function values.
Thus √

x

1 + x2
=

√
x+ E

1 + (x+ E)2

which implies by squaring (
1 + (x+ E)2

)2
x =

(
1 + x2

)2
(x+ E)(

1 + x2 + (2x+ E)E
)2
x =

(
1 + x2

)2
(x+ E)(

1 + x2
)2
x+ 2

(
1 + x2

)
(2x+ E)Ex+ (2x+ E)2E2 =

(
1 + x2

)2
x+

(
1 + x2

)2
E

2
(
1 + x2

)
(2x+ E)E + (2x+ E)2E2x =

(
1 + x2

)2
E
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Dividing by E yields

2
(
1 + x2

)
Ex+ (2x+ E)2Ex = (1 + x2)(1− 3x2)

Neglecting the E terms which vanish (in the limit),

0 = 1− 3x2 (1)

the roots are x = ± 1√
3

and the max occurs when x =
1√
3

. As a reality check, we find the

max using calculus. The derivative

f ′(x) =
1
2x
− 1

2

1 + x2
− 2x

√
x

(1 + x2)
2

=

1
2

(
x−

1
2 + x

3
2

)
− 2x

3
2

(1 + x2)
2

=
1− 3x2

2
√
x (1 + x2)

2

Thus again, f ′(x) = 0 when (1) holds so the maximizing point is the one computed already.

2. Use Fermat’s method of Ad-equality to find the tangent line and slope of the function at x.

f(x) = x2 − x3.

We seek the tangent line atB = (x, f(x)). A nearby point on the curve is A = (x+e, f(x+e))
where e = CI. Let t = EO. This time A and B bracket the point of tangency. Thus Fermat
ad-equated the slopes of the triangles 4BCE and 4AIE

BC

CE
=
AI

IE

yielding
f(x)

t+ x
=
f(x+ e)

t+ x+ e
.

Substituting the function,

x2 − x3

t+ x
=

(x+ e)2 − (x+ e)3

t+ x+ e
=
x2 − x3 + (2x− 3x2)e+ (1− 3x)e2 − e3

t+ x+ e
.
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Cross multiplying yields(
x2 − x3

)
(t+ x+ e) =

(
x2 − x3 + (2x− 3x2)e+ (1− 3x)e2 − e3

)
(t+ x).

Cancelling, (
x2 − x3

)
e =

(
(2x− 3x2)e+ (1− 3x)e2 − e3

)
(t+ x).

Dividing by e and collecting terms yields

x2 − x3 − (2x− 3x2)(t+ x) =
(
(1− 3x)e− e2

)
(t+ x).

Neglecting e terms gives
x2 − x3 − (2x− 3x2)(t+ x) = 0.

In other words, the slope of the tangent line is

f(x)

t+ x
=
x2 − x3

t+ x
= 2x− 3x2

and

t =
x2 − x3 − (2x− 3x2)x

2x− 3x2
=

2x2 − x
2− 3x

.

Of course, this agrees with the modern computations

f ′(x) = 2x− 3x2

and since the slope is the derivative,

t =
f(x)

f ′(x)
− x =

x2 − x3

2x− 3x2
− x =

2x2 − x
2− 3x

.

3. Use Fermat’s method of Ad-equality to find the slope of f(x) = x2−
√
x at x > 0. [University

of Utah, Math 3010 homework problem, April 13, 2018.]

The tangent line is approximated by a secant line through two infinitesimally close points
at A = (x, f(x)) and B = (x+E, f(x+E)). Let T = (t, 0) be the intersection point of the
tangent line with the x-axis and C = (x, 0) and D = (x+E, 0). Then the slopes of the two
similar triangles 4ACT ∼ 4BDT are equal

f(x)

x− t
=
f(x+ E)

x+ E − t
.

Cross multiplying

(x2 −
√
x)(x+ E − t) = f(x)(x+ E − t) = f(x+ E)(x− t) = ((x+ E)2 −

√
x+ E)(x− t).

Isolate the square root

(x2 −
√
x)(x+ E − t)− (x+ E)2(x− t) = −(x− t)

√
x+ E.

Square [
(x2 −

√
x)(x+ E − t)− (x+ E)2(x− t)

]2
= (x− t)2(x+ E)

(x2 −
√
x)2(x+ E − t)2 − 2(x2 −

√
x)(x− t)(x+ E − t)(x+ E)2 + (x+ E)4(x− t)2

= (x− t)2(x+ E)
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Expand in E

(x2 −
√
x)2
[
(x− t)2 + 2(x− t)E + E2

]
−2(x2 −

√
x)(x− t)(x+ E − t)

[
x2 + 2xE + E2

]
+
[
x4 + 4x3E + 6x2E2 + 4xE3 + E4

]
(x− t)2 = (x− t)2(x+ E).

Write A, B, C, D, G, H for functions of x and t,

(x2 −
√
x)2(x− t)2 + 2(x2 −

√
x)2(x− t)E +AE2

−2(x2 −
√
x)(x− t)2x2 − 2(x2 −

√
x)(x− t)

[
x2 + 2x(x− t)

]
E +BE2 + CE3

+x4(x− t)2 + 4x3(x− t)2E +DE2 +GE3 +HE4 = (x− t)2x+ (x− t)2E

We note that the E0 terms cancel

(x2 −
√
x)2(x− t)2 − 2(x2 −

√
x)(x− t)2x2 + x4(x− t)2

= (x− t)2
[
(x2 −

√
x)− x2

]2
= (x− t)2x.

We divide out E and drop any remaining terms with a factor E.

2(x2 −
√
x)2(x− t)− 2(x2 −

√
x)(x− t)

[
x2 + 2x(x− t)

]
+ 4x3(x− t)2 = (x− t)2.

If x 6= t which happens except when x = 1 and f(1) = 0 we may divide by x− t

2(x2 −
√
x)2 − 2(x2 −

√
x)x2 =

[
1 + 4x(x2 −

√
x)− 4x3

]
(x− t).

which implies

x− t = −2(x2 −
√
x)
√
x

1− 4x
√
x

.

Hence the slope is
f(x)

x− t
= −1− 4x

√
x

2
√
x

= 2x− 1

2
√
x
.

Of course this agrees with f ′(x) computed the modern way. This function is contnuous at
x > 0 so it continues to provide the derivative at x = 1. x− t blows up when 1− 4x

√
x = 0

at x = 2−4/3. Since f(2−4/3) 6= 0 this simply means that the slope is zero at this point.
Indeed, it is a minimum point for f(x).

Bo Zhu recommends the following procedure. Instead of isolating the square, rewrite the
equation as

x2(x+ E − t)− (x+ E)2(x− t) + (
√
x+ E −

√
x)(x− t)−

√
xE = 0

x2(x− t) + x2E − (x2 + 2xE + E2)(x− t)+

+(
√
x+ E −

√
x)

√
x+ E +

√
x√

x+ E +
√
x

(x− t)−
√
xE = 0

x2E − (2xE + E2)(x− t) +
E√

x+ E +
√
x

(x− t)−
√
xE = 0

Divide by E and set the remaining E = 0.

x2 − 2x(x− t) +
1

2
√
x

(x− t)−
√
x = 0

which implies
x2 −

√
x

x− t
= 2x− 1

2
√
x

as before.
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4. Following Roberval, find the are under one half of one arch of the cycloid

x(t) = a(t− sin t); y(t) = a(1− cos t)

generated by following a point on the edge of a circle of radius a as it rolls along the x-axis.
First show using Cavalieri’s principle that the area between the cycloid and its companion
curve

x(t) = at, y(t) = a (1− cos t)

equals half the area of its generating circle. Then show, again using Cavalieri’s principle
that the companion curve bisects the area of the rectangle containing the half cycloid arch.

The cycloid AQC is generated by rolling the circle of radius a to the right. As the circle
rolls through arc AF , the base of the wheel moves a distance AN . The point that was at
A and rolled to Q has moved up to height F above line AB. The distance Q is behind
the contact point N is PQ which equals the distance FR. Thus the horizontal slice QP
of the area between the cycloid and the companion curve APXC has the same length as
the horizontal slice RF of the half disk ARYDFA. It follows that the area of the half disk
equals the area between the cycloid and the companion curve.

The companion curve is determined so that the height NP is the same as the height of F
when the circle has rolled to base at N . It follows that the curve is symmetric with respect
the center of APXC. If the circle starts at C and rolls left the same angle CH = AF to
the point Z, the corresponding height of H below the line DC equals ZX and the distance
WX = RP , hence the length of PZ equals the length of XY . It follows that the area under
the companion curve in the rectangle ABCD equals the area above it, so is half the area
of the rectangle ABCD.

It follows that the area A of half an arch of the cycloid equals the area between the cycloid
and the companion curve plus the area under the companion curve

A = Area(Half Disk) +
1

2
Area( Rectangle ABCD) =

1

2
πa2 + πa2 =

3

2
πa2.
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To check, lets do the usual area using calculus

A =

∫ π

t=0

y dx

= a2
∫ π

t=0

(1− cos t)
2
dt

= a2
∫ π

t=0

1− 2 cos t+ cos2 t dt

= a2
{
π + 0 +

1

2
π

}
=

3

2
πa2.

5. Using Newton’s version of Newton’s method, find the root of the equation accurate to eight
decimal places.

f(y) = y3 − y − 7 = 0

As a first guess, take y0 = 2 because f(2) = −1 is close to zero. For the next step, add a
correction and find the new resulting equation y = 2 + p.

0 = f(2 + p) = 8 + 12p+ 6p2 + p3 − 2− p− 7 = −1 + 11p+ 6p2 + p3.

Dropping the p2 and p3 terms because they are much smaller, we get

0 = −1 + 11p

so p = .08, approximately. (Actually, p = .09 gives a closer solution to the linearized
equation, although this choice is better for the nonlinear equation. With this choice the
next correction is positive. The procedure is self-correcting in that each iterate improves the
estimate of the solution from whatever point you start.) Thus the second approximation is
y1 = 2.08. Substitute p = .09 + q into the equation yields

0 = −1 + 11p+ 6p2 + p3 = −1 + 11(.08 + q) + 6(.08 + q)2 + (.08 + q)3

= −1 + 0.88 + 11q + 0.0384 + 0.96q + 6q2 + 0.000512 + 0.0192q + 0.24q2 + q3

= −0.081088 + 11.9792q + 6.24q2 + q3

Dropping q2 and q3 terms yields

0 = −0.081088 + 11.9792q

so q = 0.0067, approximately, so the corrected estimate is y2 = 2.0867. Note that q is
the the approximate correction os y1 − root, or the error made by the first iterate. Now
substitute q = 0.0067 + r, we get

0 = −0.081088 + 11.9792q + 6.24q2 + q3

= −0.081088 + 11.9792(0.0067 + r) + 6.24(0.0067 + r)2 + (0.0067 + r)3

= −0.081088 + 0.08026064 + 11.9792r + 0.0002801136 + 0.083616r + 6.24r2

+ 0.000000300763 + 0.00013467r + 0.0201r2 + r3

= −0.0005469456 + 12.06295r + 6.2601r2 + r3

Neglecting r2 and r3 as before, we solve

0 = −0.0005469456 + 12.06295r
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so r = −0.00004534, approximately. Thus the third approximate is y3 = 2.08674534.
Observing that f(2.08674534) = 1.42×10−9 and f ′(2.08674534) = 12.1, the error y3 makes
is about f(y3)/f ′(y3) ≈ 1.2×10−10, which means that y3 approximates the root to an error
less that 0.5× 10−8, or to eight decimal places.

The modern way to compute Newton’s method, which is equivalent to the above, is to make
a good initial guess, y0 and then to iterate

yn+1 = yn −
f(yn)

f ′(yn)
.

We present a little R c© program to compute the approximate yi and correction pi. The error
in Newton’s method is known to be the square of the previous error once the approximation
is close, which is extremely fast. It gains about two decimal places each iteration.

> f<- function(x){x^3-x-7}

> fp <- function(x){3*x^2-1}

> y=2

> for( i in 1:5 ){ t = -f(y) / fp(y) ;

z = y + t ;

print( c(i,y,t), digits = 14 );

y = z }

[1] 1 2.0000000000000 0.090909090909091

[1] 2 2.0909090909091 -0.0041547810988465

[1] 3 2.0867543098102 -8.9698858243768e-06

[1] 4 2.0867453399244 -4.1753414965491e-11

[1] 5 2.0867453398827 -1.4725031199454e-16
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6. Following Newton, use the method of fluxions to find the curvature of the curve y = coshx.

Let’s determine the curvature at the point D on the curve y = f(x). The tangent line
passes through two infinitesimally close points D and d and T on the x-axis. The curvature
κ is the reciprocal of the radius of the osculating circle, whose center C is the intersection
point of the normal lines at D and d, thus it reflects the change of the slope of the tangent

line from D to d. Thus
1

κ
= DC. Let x = OB and t = TO and y = BD be fluents and

De = ẋo and de = ẏo where dotx and ẏ are the fluxions (velocities) and o is an infintesimal
time. It follows that the slope of the tangent line at D is

BD

TB
=

y

x+ t
=
ẏ

ẋ
.

Let z = KH and 1 = CH. Because TD is perpendicular to DC it follows that the triangles
4Ded, 4CHK are similar. Thus it follows that

ẏ

ẋ
=

de

De
=
KH

CH
=
z

1
= z.

Note how Newton has found a way to equate a ratio of velocities (derivaive) with a fluent
in his diagram.

Let’s solve for the length of DC using żo = Kk, which is the derivative of
ẏ

ẋ
. Because we

may consider 4Ddf to be a right triangle, we have 4Def is similar to 4def so

ẏ =
ẏ

ẋ
=
De

de
=
de

ef

so ef =
de2

De
. On the other hand Df = De+ ef so

Df = De+
de2

De
= ẋo+

ẏ2o

ẋ
.

Finally, 4CKk is similar to 4CDf so

żo =
Kk

CH
=
Df

CG
.

It follows that

CG =
Df

żo
=
ẋ2 + ẏ2

ẋ ż
.
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Also

DG =
CGKH

HC
= z CG

so if ẋ = 1 is steady horizontal motion,

DC =
√
DG2 + CG2 =

(1 + z2)
3
2

ż

Thus we may compute the curvature of y = coshx. Writing z = ẏ = f ′,

κ =
f ′′(x)

(1 + (f ′(x))2)
3
2

=
coshx(

1 + sinh2 x
) 3
2

=
1

cosh2 x
= sech2 x.

7. Use the binomial theorem to find a power series for f(x) = (1− x2)
1
3 .

We compute a few binomial coeficients( 1
3

0

)
= 1;

( 1
3

1

)
=

1
3

1
=

1

3
,

( 1
3

2

)
=

1
3

(
− 2

3

)
1 · 2

= −1

9
,

( 1
3

3

)
=

1
3

(
− 2

3

) (
− 5

3

)
1 · 2 · 3

=
5

81
,( 1

3

4

)
=

1
3

(
− 2

3

) (
− 5

3

) (
− 8

3

)
1 · 2 · 3 · 4

= − 10

243
,

( 1
3

4

)
=

1
3

(
− 2

3

) (
− 5

3

) (
− 8

3

) (
− 11

3

)
1 · 2 · 3 · 4 · 5

=
22

729

Thus,

(1 + t)
1
3 =

∞∑
k=0

( 1
3

k

)
tk.

Setting t = −x2 yields the desired series

(1− x2)
1
3 = 1− 1

3
x2 − 1

9
x4 − 5

81
x6 − 10

243
x8 − 22

729
x10 + · · ·

8. Find an antiderivative of Newton’s fluxional equation

5x3ẋ+ 3x2y2ẋ+ 2x3yẏ + 12y5ẏ = 0

Newton replaces xpẋ terms by
xp+1

p+ 1
. Similar for yq ẏ. Then he adds and removes any terms

in common. Then checks. For the ẋ,

5

4
x4 + x3y2

and for the ẏ
x3y2 + 2y6.

Removing one of the common terms after adding

5

4
x4 + x3y2 + 2y6 = c

One checks that the implicit velocities are

5x3ẋ+ 3x2y2ẋ+ 2x3yẏ + 12y5ẏ = 0.

9



9. Following Newton, find a series solution for y(x).

ẏ2 + xẋẏ − ẋ2 = 0

Newton knew
ẏ

ẋ
= xn implies y =

yn+1

n+ 1
+ C. So in this case, we may solve for the ratio

(
ẏ

ẋ

)2

+ x
ẏ

ẋ
− 1 = 0

so from the quadratic formula

ẏ

ẋ
=
−x±

√
x2 + 4

2
= −x

2
±
√(x

2

)2
+ 1

Computing a few binomial coefficients( 1
2

0

)
= 1;

( 1
2

1

)
=

1
2

1
=

1

2
,

( 1
2

2

)
=

1
2

(
− 1

2

)
1 · 2

= − 1

23
,

( 1
2

3

)
=

1
2

(
− 1

2

) (
− 3

2

)
1 · 2 · 3

=
1

24
,( 1

2

4

)
=

1
2

(
− 1

2

) (
− 3

2

) (
− 5

2

)
1 · 2 · 3 · 4

= − 5

27
,

( 1
2

5

)
=

1
2

(
− 1

2

) (
− 3

2

) (
− 5

2

) (
− 7

2

)
1 · 2 · 3 · 4 · 5

=
7

28

so
ẏ

ẋ
= −x

2
±
{

1 +
1

23
x2 − 1

27
x4 +

1

210
x6 − 5

215
x8 +

7

218
x10 + · · ·

}
which gives the two solutions

y = x− 1

4
x2 +

1

3 · 23
x3 − 1

5 · 27
x5 +

1

7 · 210
x7 − 5

9 · 215
x9 +

7

211·18
x11 + · · ·

y = −x− 1

4
x2 − 1

3 · 23
x3 +

1

5 · 27
x5 − 1

7 · 210
x7 +

5

9 · 215
x9 − 7

211·18
x11 + · · ·

10. Find the sum of the series.

S =
13

1 · 2 · 5 · 7
+

25

2 · 3 · 7 · 9
+

41

3 · 4 · 9 · 11
+

61

4 · 5 · 11 · 13
+

85

5 · 6 · 13 · 15
+ · · ·

=

∞∑
n=1

2n2 + 6n+ 5

n · (n+ 1) · (2n+ 3) · (2n+ 5)
.

Some people failed to understand summation problem in the homework involving telescoping
(collapsing) sums. The idea is to use a telescoping sum here. One notices that the general
term is

xn − xn+1 =
n+ 1

n(2n+ 3)
− (n+ 1) + 1

(n+ 1)(2(n+ 1) + 1)
=

2n2 + 6n+ 5

n · (n+ 1) · (2n+ 3) · (2n+ 5)
.

The partial sum telescopes

N∑
n=1

2n2 + 6n+ 5

n · (n+ 1) · (2n+ 3) · (2n+ 5)
=

N∑
n=1

(xn − xn+1)

= x1 − xN+1 =
2

1 · 5
− (N + 1) + 1

(N + 1)(2(N + 1) + 1)
.

The infinite sum is the limit of the partial sums as N →∞, or

S =
2

1 · 5
− 0 =

2

5
.
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11. Let fn be the nth Fibonacci number ( f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2.)
Show that

lim
n→∞

fn+1

fn
=

1 +
√

5

2
and

1

1 +
fn
fn+1

=
fn+1

fn+2

and deduce a continued fraction for the golden mean τ =
1 +
√

5

2
. [Stillwell, Mathematics

and its History, p. 195.]

Using the closed form expression of the Fibonacci numbers

fn =
1√
5


(

1 +
√

5

2

)k
−

(
1−
√

5

2

)k =
1√
5

(τn+ − τn−)

where τ± =
1±
√

5

2
. Since |τ−| < 1 < τ+ we have

lim
n→∞

fn+1

fn
= lim
n→∞

τn+1
+ − τn+1

−
τn+ − τn−

= lim
n→∞

τ+ − τ−n+ τn+1
−

1− τ−n+ τn−
=
τ + 0

1 + 0
= τ.

Proving the limit statement. By the recursion,

fn+1

fn+2
=

fn+1

fn+1 + fn
=

1

fn+1 + fn
fn+1

=
1

1 +
fn
fn+1

proving the second statement. We sequentially build up the continued fraction.

f3
f2

=
f2 + f1
f2

= 1 +
f1
f2

= 1 + 1

f4
f3

=
f3 + f2
f3

= 1 +
f2
f3

= 1 +
1

1 +
f1
f2

= 1 +
1

1 + 1

f5
f4

=
f4 + f3
f4

= 1 +
f3
f4

= 1 +
1

1 +
f2
f3

= 1 +
1

1 +
1

1 + 1

f6
f5

=
f5 + f4
f5

= 1 +
f4
f5

= 1 +
1

1 +
f3
f4

= 1 +
1

1 +
1

1 +
1

1 + 1
f7
f6

=
f6 + f5
f6

= 1 +
f5
f6

= 1 +
1

1 +
f4
f5

= 1 +
1

1 +
1

1 +
1

1 +
1

1 + 1

and so on. Finally

1 +
√

5

2
= lim
n→∞

fn+1

fn
= 1 +

1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
.. .

11



12. Given that Pn = n!, deduce the following identities in Leibnitz’s Ars Combinatoria. [Burton,
The History of Mathematics, p. 432.]

2Pn − (n− 1)Pn−1 = Pn + Pn−1, and P 2
n = Pn−1(Pn+1 − Pn)

An identity is proved by starting at one end and deducing a sequence of equal quantities
until the other end is reached. It is not proved by assuming the identity and working from
there. We use n! = n(n− 1)!. To show the first identity.

2Pn − (n− 1)Pn−1 = 2n!− (n− 1)(n− 1)!

= 2n(n− 1)!− (n− 1)(n− 1)!

=
[
2n− (n− 1)

]
(n− 1)!

=
[
n+ 1

]
(n− 1)!

= n(n− 1)! + (n− 1)!

= n! + (n− 1)!

= Pn + Pn−1.

For the second,

P 2
n = n! · n!

= (n− 1)! · n · n!

= (n− 1)!
[
(n+ 1)− 1

]
n!

= (n− 1)!
[
(n+ 1)n!− n!

]
= (n− 1)!

[
(n+ 1)!− n!

]
= Pn−1

[
Pn+1 − Pn

]
.

13. Use Euler’s method to sum the series [Katz, A History of Mathematics, p. 638.]

S =

∞∑
k=1

1

k4

Euler regards functions given by power series as extended polynomials. He employs the
relation between the coefficients of the polynomial and the roots. Let x1, . . . , xn be the
roots of the polynomial then

p(x) = 1 + a1x+ a2x
2 + · · ·+ anx

n =

(
1− x

x1

)(
1− x

x2

)
· · ·
(

1− x

xn

)
implies that

−a1 =
1

x1
+ · · ·+ 1

xn
as one can see by multiplying the factors. Thus we need an analytic function whose zeros
are k4. The trick is to consider the sinc function

sinx

x
= 1− x2

3!
+
x4

5!
− x6

7!
+
x8

9!
· · · (2)

whose zeros are ±π,±2π,±2π, . . . but not 0 because sinc has the value one at zero. The
corresponding product formula is

sinx

x
=
(

1− x

π

)(
1 +

x

π

)(
1− x

2π

)(
1 +

x

2π

)(
1− x

3π

)(
1 +

x

3π

)
· · ·

=

(
1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)
· · ·

12



Replacing x by ix gives the series for sinhx =
ex − e−x

2
. It has the power series

sinhx

x
= 1 +

x2

3!
+
x4

5!
+
x6

7!
+
x8

9!
· · · (3)

The zeros are ±πik so it has the product

sinhx

x
=
(

1− x

πi

)(
1 +

x

πi

)(
1− x

2πi

)(
1 +

x

2πi

)(
1− x

3πi

)(
1 +

x

3πi

)
· · ·

=

(
1 +

x2

π2

)(
1 +

x2

22π2

)(
1 +

x2

32π2

)
· · ·

Thus the product of these two has the product formula

sinhx sinx

x2
=

(
1 +

x2

π2

)(
1− x2

π2

)(
1 +

x2

22π2

)(
1− x2

22π2

)(
1 +

x2

32π2

)(
1− x2

32π2

)
· · ·

=

(
1− x4

π4

)(
1− x4

24π4

)(
1− x4

32π4

)
· · ·

Thus this function’s power series has powers of four, namely multiplying (2) and (3),

sinhx sinx

x2
= 1 +

(
1

3!
− 1

3!

)
x2 +

(
1

5!
− 1

(3!)2
+

1

5!

)
x4 +

(
1

7!
− 1

3!5!
+

1

3!5!
− 1

7!

)
x6+

+

(
1

9!
− 1

3! 7!
+

1

(5!)2
− 1

3! 7!
+

1

9!

)
x8 + · · ·

= 1− 1

90
x4 +

16

5 · 9!
x8 + · · ·

Substituting x4 = y, the function

sinh 4
√
y sin 4

√
y

√
y

= 1− 1

90
y +

16

5 · 9!
y2 + · · · =

(
1− y

π4

)(
1− y

24π4

)(
1− y

32π4

)
· · ·

has the roots y = π4k4 for k = 1, 2, 3, . . .. The sum of the reciprocals is thus

1

90
=

1

π4

(
1

14
+

1

24
+

1

34
+

1

44
+ · · ·

)

as desired. S =
π4

90
.

14. Find the generating function for the triangular numbers.

For a sequence {ai}, the generating function is given by the power series

f(x) =

∞∑
k=1

akx
k

The triangular numbers are 1, 3, 6, 10, . . ., the number of dots in a triangle of side 1, 2, 3, 4, . . ..
They are given by 1, 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4, . . ., in other words

an =
n(n+ 1)

2
=

(
n+ 1

2

)
.

We note that

∆an = an − an−1 =
n(n+ 1)

2
− (n− 1)n

2
= n

13



and
∆2an = (an − an−1)− (an−1 − an−2) = n− (n− 1) = 1.

thus the triangular numbers satisfy the recursion

a1 = 1, a2 = 3, an − 2an−1 + an−2 = 1 for n ≥ 3.

So substituting j = k, j = k + 1 and j = k + 2,

f(x) =

∞∑
k=1

akx
k =

∞∑
j=1

ajx
j

xf(x) =

∞∑
k=1

akx
k+1 =

∞∑
j=2

aj−1x
j

x2f(x) =

∞∑
k=1

akx
k+2 =

∞∑
j=3

aj−2x
j

It follows from
∞∑
k=0

xk =
1

1− x

and the recursion that

f(x)− 2xf(x) + x2f(x) =
(
a1x+ a2x

2
)
− 2
(
a1x

2
)

+

∞∑
j=3

(
aj − 2aj−1aj−2

)
xj

=
(
x+ 3x2

)
− 2
(
x2
)

+

∞∑
j=3

xj

= x+ x2 +

(
1

1− x
− 1− x− x2

)
=

1

1− x
− 1 =

x

1− x

It follows that
(1− 2x+ x2)f(x) =

x

1− x
or

f(x) =
x

(1− x)3
.

14



Let us derive the formula another way.

f(x) =

∞∑
k=1

akx
k

=
1

2

∞∑
k=1

(k + 1)k xk

=
x

2

∞∑
k=1

(k + 1)k xk−1

=
x

2

d

dx

( ∞∑
k=1

(k + 1)xk

)

=
x

2

d2

dx2

( ∞∑
k=1

xk+1

)

=
x

2

d2

dx2

(
1

1− x
− 1− x

)
=

x

(x− 1)3
.

Here is a third way. Observe that(
1 + x+ x2 + x3 + · · ·

) (
a1x+ a2x

2 + a3x
3 + · · ·

)
=

a1x+ (a1 + a2)x2 + (a1 + a2 + a3)x3 + · · ·

which says

f(x)

1− x
=

∞∑
k=1

 k∑
j=1

aj

xk

It follows that

x

(1− x)3
=

x

(1− x)2

∞∑
k=0

xk

=
1

(1− x)2

∞∑
k=1

xk

=
1

1− x

∞∑
k=1

k xk

=

∞∑
k=1

k(k + 1)

2
xk

=

∞∑
k=1

akx
k.

15. Fermat considered the problem of how to divide the stakes of a two player game if the game
is interrupted before all rounds have been played. Suppose both players I and II have an
equal chance of winning each round. Suppose player I needs to win k of the next n rounds,
where n ≥ k ≥ 1. Show that player I’s share should be

1

2n

n∑
j=k

(
n

j

)

15



of the total stake. [Stillwell, Mathematics and its History, p. 207.]

Fermat’s principle is that if a game should stop before the last play and there are two
possibile outcomes, either I wins A on the last play or II wins B on the last play with both
outcomes equally likely equally, then the share of the stake I should get is half of the total.
Let us argue by induction on n. Thus if k = 1 and n = 1, then players I and II are equally
likely to win and I’s share should be half. But for k = n = 1,

1

21

1∑
j=1

(
1

j

)
=

1

2

which completes the base case. Now suppose the formula is correct for any 1 ≤ k ≤ n.
Suppose n + 1 games are left and they play the next game. Two outcomes are possible: I
loses and he needs k more wins or I wins and he needs k − 1 more wins in the remaining n
games. Thus we may apply the induction hypothesis: the proportion of I’s wins should he
the average of the two outcomes, namely,

1

2

 1

2n

n∑
j=k

(
n

j

)
+

1

2n

n∑
j=k−1

(
n

j

) =
1

2n+1

 n−1∑
j=k−1

(
n

j + 1

)
+

n−1∑
j=k−1

(
n

j

)
+

(
n

n

)
=

1

2n+1

 n−1∑
j=k−1

(
n+ 1

j + 1

)
+ 1


=

1

2n+1

 n∑
j=k

(
n+ 1

j

)
+

(
n+ 1

n+ 1

)
=

1

2n+1

n+1∑
j=k

(
n+ 1

j

)
so the induction is complete.

16. Show ∫ 1

0

xn(log x)n dx =
(−1)nn!

(n+ 1)n+1
.

Then prove Johann Bernoulli’s formula. [Stillwell, Mathematics and its History, p. 274.]∫ 1

0

xx dx = 1− 1

22
+

1

33
− 1

44
+ · · ·

First note that for integer a ≥ 1, by L’Hopital’s rule

lim
x→0+

x loga x = lim
x→0+

loga x
1

x

= lim
x→0+

a loga−1 x

x

− 1

x2

= −a lim
x→0+

x loga−1 x

so that repeating a times

lim
x→0+

x loga x = (−1)aa! lim
x→0+

x = 0.

Thus the function xn(log x)n is continuous on [0, 1] so integrable. For integers a, b ≥ 1,

integration by parts gives u = (log x)b and dv = xa dx so du =
b(log x)b−1 dx

x
and v =

xa+1

a+ 1

16



so ∫ 1

0

xa(log x)b dx =

[
(log x)bxa+1

a+ 1

]1
0

− b

a+ 1

∫ 1

0

xa(log x)b−1 dx

= − b

a+ 1

∫ 1

0

xa(log x)b−1 dx

Applying this n times yields the first equation∫ 1

0

xn(log x)n dx = − n

n+ 1

∫ 1

0

xn(log x)n−1 dx

=
n(n− 1)

(n+ 1)2

∫ 1

0

xn(log x)n−2 dx

...

=
(−1)nn!

(n+ 1)n

∫ 1

0

xn dx

=
(−1)nn!

(n+ 1)n+1
.

Now, using the fact that

xx = ex log x = 1 + x log x+
x2(log x)2

2!
+
x3(log x)3

3!
+
x4(log x)4

4!
+ · · ·

Integrating and using the integrals above gives

∫ 1

0

xx dx =

∫ 1

0

dx+

∫ 1

0

x log x dx+

∫ 1

0

x2(log x)2

2!
dx+

∫ 1

0

x3(log x)3

3!
dx+

∫ 1

0

x4(log x)4

4!
dx+ · · ·

= 1− 1

22
+

1

33
− 1

44
+ · · ·

17. Use Leibnitz’s Transmutation Formula to compute the integral, and check.∫ 1

0

2x− x2 dx

Of course, one would compute the integral directly, but this will show us what the trans-
mutation formula looks like in this case.
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The fundamental triangle is 4PQR has ds =
√
dx2 + dy2. The slope of the tangent line

is
dy

dx
. The distance of the tangent line to the otigin and is h = OW and its y-intercept is

z = OT . Since 4PQR is similar to 4OWT we have

ds

dx
=
z

h

or h ds = z dx. The area of the triangle 4OPQ is half the base times height or
1

2
h ds. thus

the total area under the curve is∫ x0

0

y dx =
1

2

∫ x0

0

h ds+
1

2
x0y0

where the integral on the right is the area of the region below the curve and above the line
from O to (x0, y0). The second term is the area of the triangle from O to (x0, 0) to (x0, y0).
Using h ds = z dx we get the transmutation formula∫ x0

0

y dx =
1

2

∫ x0

0

z dx+
1

2
x0y0

For the integral given by the problem, y = f(x) = 2x − x2, (x0, y0) = (1, 1) and the slope
of the tangent line is

m =
dy

dx
= 2− 2x.

Thus using the point-slope form, at pont (x, y) and slope m, the equation of the tangent
line is

Y − y = (2− 2x)(X − x)

The tangent line crosses the y-axis at (X,Y ) = (0, z), so

z = y − (2− 2x)x = 2x− x2 − 2x+ 2x2 = x2

The transmutation formula is then∫ 1

0

2x− x2 dx =

∫ x0

0

y dx =
1

2

∫ x0

0

z dx+
1

2
x0y0 =

1

2

∫ 1

0

x2 dx+
1

2
.
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Now both sides give the same value.∫ 1

0

2x− x2 dx =

[
x2 − x3

3

]1
0

= 1− 1

3
,

1

2

∫ 1

0

x2 dx+
1

2
=

1

2

[
x3

3

]1
0

+
1

2
=

1

6
+

1

2
.

18. Determine whether there is an Eulerian path through the following graph. If ther is one,
what is it?

An Eulerian path is a path starting at one node that crosses each edge exactly once. The
valences (number of edges at a vertex) vA = 6, vB = 6, vC = 6, vD = 5, vE = 4, vF = 4
and vG = 5. There are all together n = 18 edges. Euler gave the following formula that has
to hold if and only if there is an Eulerian path. At each node (region) compute the number
of passages

` =



v + 1

2
, if v is odd

v

2
, if v is even and path does not start or end at the node

v

2
+ 1, if v is even and path starts and ends at the node.

Then there is an Eulerian path if and only if the sum over all nodes

`A + · · ·+ `G = n or n+ 1.

In case there are more than two nodes with odd valence, this cannot hold. In our graph,
there are two nodes with odd valence. They will be the start and endpoint of the Eulerian

path. Ths means that for even valence, ` =
v

2
. Computing,

`A + · · ·+ `G = 3 + 3 + 3 + 3 + 2 + 2 + 3 = 19 = n+ 1

Thus the Eulerian path is possible. One such path is DBDEBABACACFCGFEGDG.
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