
Math 3210 § 2.
Treibergs

Third Midterm Exam Name: Solutions
March 25, 2020

1. Let f(x) be defined on the reals. State the definition: f(x) is continuous at the real number
a. Prove that f(x) = (1 + |x|)2 is continuous at a.

f : R→ R is continuous at a ∈ R if for every ε > 0 there is a δ > 0 such that |f(x)−f(a)| <
ε whenever x ∈ R and |x− a| < δ.

To see that f is continuous at a, choose ε > 0. Let δ = min

{
1,

ε

2 + 3|a|

}
. For any x ∈ R

such that |x− a| < δ we have by the triangle inequality

|x| = |a+ x− a| ≤ |a|+ |x− a| < |a|+ δ ≤ |a|+ 1.

Furthermore this shows

|f(x)− f(a)| = |(1 + |x|)2 − (1 + |a|)2|
= |(1 + |x|+ 1 + |a|)(1 + |x| − 1− |a|)|
= (2 + |x|+ |a|)

∣∣|x| − |a|∣∣
≤ (2 + |a|+ 1 + |a|)|x− a|
= (3 + 2|a|)|x− a|
< (3 + 2|a|)δ

< (3 + 2|a|) ε

3 + 2|a|
= ε.

2. Let the sequence {xn} be defined recursively by x1 = a where 0 < a < 1 and xn+1 =
2 + axn. Prove that {xn} is bounded above. Prove that {xn} is strictly increasing. Is {xn}
convergent? Why? If xn → L as n→∞, what is L?

To see that {xn} is bounded above, we need to either guess the bound by iterating the
recursion or see it from the graphs of y = 2 + ax and y = x. The first few terms are

a, 2 + a2, 2 + 2a+ a3, 2 + 2a+ 2a2 + a4, 2 + 2a+ 2a2 + 2a3 + a5, . . .

which seems to converge to B =
∑∞
k=0 2ak = 2

1−a . Oterwise, the recursion is a zig-zag
path on the plane between the y = 2 + ax and y = x lines which intersect if x = 2 + ax at
B = 2

1−a .

We show that 2
1−a is an upper bound using induction. Base case x1 = a < 1 < 2 < 2

1−a .

For the induction case, assume that for some n we have xn ≤ 2
1−a . Then since a > 0,

xn+1 = 2 + axn ≤ 2 + a
2

1− a
=

2− 2a+ 2a

1− a
=

2

1− a

proving the induction case.

We show that {xn} is strictly increasing by induction. For the base case, x2 = 2 + ax1 =
2 + a2 > 2 > 1 > a = x1. For the induction case, assume xn+1 − xn > 0 for some n. Then

xn+2 − xn+1 = 2 + axn+1 − 2− axn = a(xn+1 − xn) > 0,

since a > 0, proving the induction case.
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Hence {xn} is a strictly increasing, bounded sequence. By the Monotone Convergence
Theorem the sequence converges to a real number: there is L ∈ R such that xn → L as
n→∞. Taking limits of both sides of the recursion,

L = lim
n→∞

xn+1 = lim
n→∞

(2 + axn) = 2 + aL.

Hence L = 2
1−a .

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: If f : [0, 1] → R is continuous and one-to-one, then f is strictly mono-
tone.

True. Argue by contradiction. If f were not monotone, then there are three points
x1 < x2 < x3 in [0, 1] such that either f(x1) < f(x2) > f(x3) or f(x1) > f(x2) <
f(x3). (f(x1), f(x2), and f(x3) must be distinct since f is one-to-one.) In the former
case, choose y such that max{f(x1), f(x3)} < y < f(x2). In the latter case choose y
such that min{f(x1), f(x3)} > y > f(x2). In both cases, by the Intermediate Value
Theorem applied to both [x1, x2] and [x2, x3] there are c1 ∈ (x1, x2) and c2 ∈ (x2, x3)
such that f(c1) = y = f(c2), contradicting f is one-to-one.

(b) Statement: Let I1 ⊃ I2 ⊃ I3 ⊃ · · · be a decreasing sequence of bounded intervals.
Then the intersection is nonempty:

⋂∞
n=1 In 6= ∅.

False. It does not specify closed intervals. Taking In = (0, 1
n ) gives decreasing

sequence of intervals I1 ⊃ I2 ⊃ I3 ⊃ · · · but
⋂∞
n=1 In = ∅.

(c) Statement: For f : R→ R if f(xn)→ f(0) as n→∞ for some sequence such that
xn → 0 as n→∞ then f is continuous at 0.

False. The statement would be true if it said “for all sequences.” To construct a
counterexample, let

f(x) =

{
1, if x ≥ 0;

0, if x < 0.

The sequence xn = 1
n → 0 as n → ∞ and f(xn) = 1 → 1 = f(0) as n → ∞ but f is

not continuous at 0.

4. Prove that if f : R→ R is continuous at a ∈ R and f(x) ≥ 5 for all x 6= a then f(a) ≥ 5.

Choose ε > 0. By the continuity of f at a ∈ R, there is a δ > 0 such that

|f(x)− f(a)| < ε whenever x ∈ R and |x− a| < δ.

Now choose any z close but not equal to a, such that 0 < |z − a| < δ. Hence for this z we
have, using the assumption on f(z),

f(a) = f(z) + f(a)− f(z) ≥ f(z)− |f(a)− f(z)| > 5− ε.

Since ε > 0 was arbitrary, we conclude f(a) ≥ 5.
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5. Define: {Sn} is a Cauchy Sequence. Show that there is an L ∈ R such that Sn → L as
n→∞, where

Sn = 1− 1

2!
+

1

4!
− 1

6!
+ · · ·+ (−1)n+1

(2n)!
=

n∑
k=0

(−1)k+1

(2k)!
.

{Sn} is a Cauchy Sequence if for every ε > 0 there is an N ∈ R such that |S`−Sm| < ε whenever
` > N and m > N .

We show that {Sn} is a Cauchy Sequence. Hence it is convergent: there is an L ∈ R such

that Sn → L as n→∞. To see that {Sn} is a Cauchy Sequence, choose ε > 0. Let N =
log
(
1
ε

)
log 2

.

Then for any m, ` > N we may suppose ` ≥ m. If m = ` then |Sm − S`| = 0 < ε. If ` > m we
have

|S` − Sm| =

∣∣∣∣∣∑̀
k=0

(−1)k+1

(2k)!
−

m∑
k=0

(−1)k+1

(2k)!

∣∣∣∣∣
=

∣∣∣∣∣ ∑̀
k=m+1

(−1)k+1

(2k)!

∣∣∣∣∣
≤

∑̀
k=m+1

∣∣∣∣ (−1)k+1

(2k)!

∣∣∣∣
=

∑̀
k=m+1

1

(2k)!

≤
∑̀

k=m+1

1

2k

=
1

2m+1

`−m−1∑
k=0

1

2k

=
1

2m+1
·

1−
(
1
2

)`−m
1− 1

2

≤ 1

2m+1
· 1

1
2

=
1

2m

<
1

2N
= ε

showing {Sn} is a Cauchy Sequence. Here we have used for k ≥ m+ 1 ≥ 1,

(2k)! = 1 · 2 · 3 · · · (2k − 1) · 2k ≥ 1 ·
2k − 1 factors︷ ︸︸ ︷
2 · 2 · . . . · 2 ≥ 2k.
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