Math 3210 § 2. Third Midterm Exam Name: Golutions
Treibergs March 25, 2020

1. Let f(x) be defined on the reals. State the definition: f(x) is continuous at the real number
a. Prove that f(z) = (1+|z|)? is continuous at a.

f: R — Ris continuous at a € R if for every € > 0 there is a § > 0 such that | f(z) — f(a)| <
€ whenever x € R and |z —a| < 0.

To see that f is continuous at a, choose € > 0. Let § = min {1, 2+€3|} For any z € R
a
such that | — a] < § we have by the triangle inequality

2 = a+ 2 —al < |a| + o — a| < |a] + < || + 1.
Furthermore this shows

[f(z) = f(a)]

(1 [2[)? = (1 + [a])?|
[T+ |zl + 1+ [a)(1 +[z| = 1 = |a])|
= (2+ |z[ + |a])|[2] - |a|

2+ |al + 1+ |a])|x — al
= (34 2|al)|z — ]
< (3+42]a])d
<(

3+ 2lal)
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2. Let the sequence {x,} be defined recursively by 1 = a where 0 < a < 1 and Tp11 =
2 + ax,,. Prove that {x,} is bounded above. Prove that {x,} is strictly increasing. Is {x,}
convergent? Why? If x, — L as n — oo, what is L?

To see that {z,} is bounded above, we need to either guess the bound by iterating the
recursion or see it from the graphs of y = 2 + ax and y = z. The first few terms are

a,2+ a2+ 2a+ a2+ 2a +2a® + a*,2 + 2a + 2a® + 2a® + d, . ..

which seems to converge to B = > 7 2aF = % Oterwise, the recursion is a zig-zag
path on the plane between the y = 2 + ax and y = x lines which intersect if z = 2 + ax at
B=-2.

1—a

We show that ﬁ is an upper bound using induction. Base case r1 = a <1 <2 < ﬁ
For the induction case, assume that for some n we have x, < ﬁ Then since a > 0,

2 _2—2a—|—2a 2

ngn+1:2—‘_Mjn§2+alfa 1—a T 1l1-a

proving the induction case.

We show that {x,} is strictly increasing by induction. For the base case, o = 2 + azx1 =
2+a?>2>1>a=z;. For the induction case, assume z,, 41 — z,, > 0 for some n. Then

Tyt — Tptl =24 aTpt1 — 2 — aZy = a(Tpy1 — Tn) > 0,

since a > 0, proving the induction case.



Hence {z,} is a strictly increasing, bounded sequence. By the Monotone Convergence
Theorem the sequence converges to a real number: there is L € R such that x, — L as
n — oo. Taking limits of both sides of the recursion,

L= lim 2,41 = lim (2+ az,) =2+ aL.
n— oo n— oo

Hence L = %
—a

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) STATEMENT: If f:[0,1] — R is continuous and one-to-one, then f is strictly mono-
tone.
TRUE. Argue by contradiction. If f were not monotone, then there are three points
1 < 9 < x3 in [0,1] such that either f(x1) < f(z2) > f(x3) or f(z1) > f(a2) <
f(xs). (f(z1), f(x2), and f(x3) must be distinct since f is one-to-one.) In the former
case, choose y such that max{f(z1), f(z3)} <y < f(z2). In the latter case choose y
such that min{f(z1), f(xz3)} > v > f(x2). In both cases, by the Intermediate Value
Theorem applied to both [z1, 23] and [xe, z3] there are ¢; € (z1,22) and ¢ € (22, x3)
such that f(c1) =y = f(c2), contradicting f is one-to-one.

(b) STATEMENT: Let Iy D Is D I3 D -+ be a decreasing sequence of bounded intervals.
Then the intersection is nonempty: (\o—y I, # 0.
FALSE. It does not specify closed intervals. Taking I,, = (0, %) gives decreasing
sequence of intervals I D Is D I3 D --- but ﬂif:l I, =0.

(¢) STATEMENT: For f:R — R if f(x,) — f(0) as n — oo for some sequence such that
Ty, — 0 as n — oo then f is continuous at 0.
FALSE. The statement would be true if it said “for all sequences.” To construct a
counterexample, let

1, ifxz>0;

f(x):{oz if 7 < 0.

The sequence z, = + — 0 as n — oo and f(z,) =1 — 1= f(0) as n — oo but f is
not continuous at 0.

4. Prove that if f : R — R is continuous at a € R and f(x) > 5 for all x # a then f(a) > 5.
Choose € > 0. By the continuity of f at a € R, there is a § > 0 such that

|f(z) — fla)] <€ whenever x € R and |z — a| < 4.

Now choose any z close but not equal to a, such that 0 < |z — a|] < §. Hence for this z we
have, using the assumption on f(z),

fla) = f(z) + fla) = f(2) = f(2) = [f(a) = f(2)] > 5 —e

Since € > 0 was arbitrary, we conclude f(a) > 5.



5. Define: {S,} is a Cauchy Sequence. Show that there is an L € R such that S, — L as
n — oo, where

k+1
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{Sn} is a Cauchy Sequence if for every e > 0 there is an N € R such that |S¢ — S| < € whenever
£> N and m > N.
We show that {S,} is a Cauchy Sequence. Hence it is convergent: there is an L € R such
log ()
log2 °
Then for any m,¢ > N we may suppose £ > m. If m = £ then |S,, — Sy =0 <e. If £ >m we
have

that S,, — L as n — oo. To see that {S,} is a Cauchy Sequence, choose € > 0. Let N =
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showing {S,,} is a Cauchy Sequence. Here we have used for k > m +1 > 1,

2k — 1 factors
—_———
(2k)!=1-2-3---(2k—1)-2k>1-2-2-...-2>2F,



