
Math 3210 § 3.
Treibergs

First Midterm Exam Name: Solutions
September 15, 2021.

1. Prove that for every natural number n the quantity 72n − 1 is divisible by 48.

We argue by induction.

Base Case. When n = 1 the quantity is 72n − 1 = 72 − 1 = 48 which is divisible by 48.

Induction Case. We assume that for some natural number n the quantity is divisible
by 48 so there is and integer k so that 72n − 1 = 48k. To prove it for n + 1 we have

72(n+1) − 1 = 72 · 72n − 1 = 49 · 72n − 1.

Using the induction hypothesis 72n = 48k + 1,

72(n+1) − 1 = 49 ·
(
48k + 1

)
− 1 = 49 · 48k + 48 = 48(49k + 1),

which means that 72(n+1) − 1 is divisible by 48 and the induction step is proven.

Since both the base and induction cases hold, by induction we conclude that 72n − 1 is
divisible by 48 for all n ∈ N.

2. Recall the axioms of a field (F ,+,×). For any x, y, z ∈ F ,

[A1.] (Commutativity of Addition) x + y = y + x.

[A2.] (Associativity of Addition) x + (y + z) = (x + y) + z.

[A3.] (Additive Identity) (∃ 0 ∈ F) (∀ t ∈ F) 0 + t = t.

[A4.] (Additive Inverse) (∃−x ∈ F) x + (−x) = 0.

[M1.] (Commutativity of Multiplication) xy = yx.

[M2.] (Associativity of Multiplication) x(yz) = (xy)z.

[M3.] (Multiplicative Identity) (∃ 1 ∈ F) 1 6= 0 and (∀ t ∈ F) 1t = t.

[M4.] (Multiplicative Inverse) If x 6= 0 then (∃x−1 ∈ F) (x−1)x = 1.

[D.] (Distributivity) x(y + z) = xy + xz.

Using only the field axioms, show that for any a, b ∈ F such that a 6= 0 and b 6= 0 we have

a + b = (a−1 + b−1)(ab). (1)

Justify every step of your argument using just the axioms listed here.

[Hint: the first line of your argument must not be “a + b = (a−1 + b−1)(ab).”]

Starting from the right side, we deduce a sequence of equalities that are justified by the
axioms and end up with the left side. Since a 6= 0 and b 6= 0 there are multiplicative inverses
a−1 and b−1 in F by the existence of a multiplicative inverse (M4) and so the right side
exists.
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(a−1 + b−1)(ab) Start with the right hand member.

= (ab)(a−1 + b−1) Commutivity of multiplication. (M1)

= (ab)a−1 + (ab)b−1 Distributivity. (D)

= (ba)a−1 + (ab)b−1 Commutivity of multiplication. (M1)

= b(aa−1) + a(bb−1) Associativity of multiplication. (M2)

= b(a−1a) + a(b−1b) Commutativity of multiplication. (M1)

= b(1) + a(1) Multiplicative inverse. (M4)

= (1)b + (1)a Commutivity of multiplication. (M1)

= b + a Multiplicative identity. (M3)

= a + b Commutivity of addition. (A1)

Since all expressions are equal, we conclude that the left side of (1) equals the right.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Let f : A→ B be a function and E,F ⊂ B. If f−1(E) = f−1(F ) then E = F .

False. Let f : R→ R be the constant function f(x) = 0. Let E = {0} and F = R.
Then f−1(E) = R = f−1(F ) but E 6= F .

(b) If f : R→ R is function of the real numbers such that f(x) 6= f(y) implies x 6= y for
all x, y ∈ R, then f is one to one.

False. Let f : R→ R be the constant function f(x) = 1. Then for every x, y ∈ R,
f(x) 6= f(y) is never true so that the implication f(x) 6= f(y) =⇒ x 6= y is always
true. However f is not one-to-one since f(0) = f(1) = 1. In fact, the condition is true
for all functions, one to one or not. The contrapositive is: x = y implies f(x) = f(y)
for all x, y ∈ R.

(c) There is a real number x ∈ R such that x3 = 2.

True. Consider the set E = {x ∈ R : x3 < 2}. Since 03 < 2, we have 0 ∈ E so E is
nonempty. Since x > 2 implies x3 > 23 = 8 > 2, then no x > 2 is in E. Hence E is
bounded above by 2. By the Completeness of R, there is a least upper bound of E,
namely, the real number m = lubE. m satisfies m3 = 2.

This is all that has to be included in the argument for full credit. For completeness
sake, here is an argument that m3 = 2. Assume for contradiction that m3 6= 2.

In case m3 < 2, let ε = min{1, .01(2−m3)} > 0. Let t = m + ε. Then

t3 = m3 + 3m2ε + 3mε2 + ε3 ≤ m3 + 12ε + 6ε + ε

since ε ≤ 1 and m ≤ 2. It follows that

t3 ≤ m3 + 19ε ≤ m3 + .19(2−m3) = .81m3 + .19 · 2 < 2.

Thus we have reached a contradiction in this case: there is a number t larger than m
which satisfies t3 < 2, hence t ∈ E, but is not bounded above by m.

In case m3 > 2, let ε = min{1, .01(m3 − 2)} > 0. Since m is the least upper bound,
there is a t ∈ E such that t > m− ε. For this t,

t3 > (m− ε)3 = m3 − 3m2ε + 3mε2 − ε3 ≥ m3 − 12ε− ε

since ε ≤ 1 and 0 ≤ m ≤ 2. It follows that

t3 > m3 − 13ε ≥ m3 − .13(m3 − 2) = .87m3 + .13 · 2 > 2.

Thus we have reached a contradiction in this case also: the number t ∈ E but t3 > 2.
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4. Recall that the rational numbers are defined to be the set of equivalence classes Q = S/ ∼
where S =

{a
b

: a, b ∈ Z, b 6= 0
}

is the set of symbols (pairs of integers) and the symbols

are equivalent if they represent the same fraction
a

b
∼ c

d
iff ad = bc. We denote the

equivalence class, the “fraction,”
[a
b

]
to distinguish it from a “symbol”

a

b
from S. Addition

and multiplication of rationals, for example, is defined on equivalence classes by[m
n

]
+
[r
t

]
=

[
mt + nr

nt

]
,

[m
n

]
·
[r
t

]
=
[mr

nt

]
.

(a) Show that the function f : Q→ Q is well defined, where f

([
p

q

])
=

[
p2

p2 + q2

]
.

We have to show that if we take different representatives from the class of the argument,
then the function values give the same class. In other words,

if
p

q
∼ p′

q′
then

p2

p2 + q2
∼ (p′)2

(p′)2 + (q′)2
.

p

q
∼ p′

q′
means that pq′ = qp′. Now, using this equation, we find

p2
(
(p′)2 + (q′)2

)
= p2(p′)2 + p2(q′)2 = p2(p′)2 + (pq′)2

= p2(p′)2 + (p′q)2 = p2(p′)2 + q2(p′)2 =
(
p2 + q2

)
(p′)2.

Thus
p2

p2 + q2
∼ (p′)2

(p′)2 + (q′)2
follows, as to be shown.

(b) Is there a rational number r > 0 such that r2 = r + 1? Explain why or why not.

No. Suppose r were rational for contradiction, then as in the theorem from Taylor,

we show that a rational solution must be integral. Let r =
p

q
where p, q ∈ N and have

no common factors. Then
p2

q2
=

p

q
+ 1

or
p2 = pq + q2.

Thus if s > 1 is a prime factor of q then since s divides the right side, it divides the
left side p2. As s is prime, it must divide p. This is a contradiction if q 6= 1 because
then both p and q would have s as a common factor. If q = 1 then r is an integer. We
show an integer cannot solve the equation. The equation becomes f(r) = 0 where

f(r) = r2 − r − 1 =

(
r − 1

2

)2

− 5

4
.

and we have completed the square to see that f is increasing for x ≥ 1
2 . We have

f(1) = −1, and f(n) ≥ f(2) = 1 for n ≥ 2 so there are no integral zeros. Hence there
is no integral solution.

One could also apply the theorem in Taylor’s text to conclude that any rational solution
of r2 = r + 1 is an integer and rule out integers as we have done.
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5. Let E ⊂ R be a set of real numbers given by E =

{
5n− n2

5 + n2
: n ∈ N

}
. Define: ` is the

greatest lower bound of E. Find the greatest lower bound of E and prove your assertion.

` is the greatest lower bound of E means that ` is a real number which (1) is a lower bound:
(∀t ∈ E) ` ≤ t; and (2) no larger number is a lower bound: (∀y > `)(∃t ∈ E) t < y.

We claim glbE = −1. To see (1), we observe that the n-th term

xn =
5n− n2

5 + n2
=

5n + 5− 5− n2

5 + n2
=

5 + 5n

5 + n2
− 1 ≥ 0− 1 = −1

for all n ∈ N since 5 + 5n ≥ 0 and 5 + n2 > 0. Thus ` = −1 is a lower bound.

To see (2), choose any number y > −1. By the Archimedean Property, there is an integer
n ∈ N such that

1

n
<

y + 1

10
.

For this n the element xn ∈ E satisfies

xn =
5 + 5n

5 + n2
− 1 ≤ 5n + 5n

n2
− 1 =

10

n
− 1 < (y + 1)− 1 = y

since we have increased the numerator and decreased the denominator. Thus y is not a
lower bound since there is an xn ∈ E such that xn < y. (1) and (2) imply glbE = −1.
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