
Math 3210 § 2.
Treibergs

Second Midterm Exam Name: Solutions
October 15, 2025

1. Let an =
n+ (−1)n

n+ 2
. Define: L = lim

n→∞
an. Find L using limit laws. Prove using just your

definition that L = lim
n→∞

an.

The limit L = lim
n→∞

an is a number such that for all ε > 0 there is an N ∈ R such that

|an − L| < ε whenever n ∈ N satisfies n > N .

Using the quotient, sum and limit rules

L = lim
n→∞

n+ (−1)n

n+ 2
= lim

n→∞

1 +
(−1)n

n

1 +
2

n

=

lim
n→∞

(
1 +

(−1)n

n

)
lim
n→∞

(
1 +

2

n

)

=
lim
n→∞

1 + lim
n→∞

(−1)n

n

lim
n→∞

1 + lim
n→∞

2

n

=
1 + 0

1 + 0
= 1.

To prove L = 1, choose ε > 0. Let N = 3
ε . For any n ∈ N such that n > N we have

|an − L| =
∣∣∣∣n+ (−1)n

n+ 2
− 1

∣∣∣∣ = ∣∣∣∣n+ (−1)n − (n+ 2)

n+ 2

∣∣∣∣ = |(−1)n − 2|
n+ 2

≤|(−1)n|+ |2|
n+ 2

=
3

n+ 2
<

3

N + 2
<

3

N
= ε.

2. Let a ∈ R be a point and f : R → R be a continuous function such that f(a) > 0. Then
there is an open interval I ⊂ R containing a such that f(x) > 0 for all x ∈ I.

Let ε = f(a) > 0. By continuity at a there is a δ > 0 such that

|f(x) = f(a)| < ε whenever x ∈ (a− δ, a+ δ).

It follows that whenever x ∈ (a− δ, a+ δ),

f(x) = f(a)− [f(a)− f(x)] ≥ f(a)− |f(a)− f(x)| > f(a)− ε = f(a)− f(a) = 0.

Thus f is positive in the interval I = (a− δ, a+ δ).

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: There is z ∈ R such that f(z) = 0, where f(x) = x4 − 2x2 + 4x+ 3.

True: f(x) is continuous in R because it’s a polynomial. f(0) = 3 and f(−1) =
1 − 2 − 4 + 3 = −2. Thus y = 0 is between f(−1) = −2 and f(0) = 3. By the
Intermediate Value Theorem there is z ∈ [−1, 0] such that f(z) = 0.

(b) Statement: Let f : R → R be a continuous but unbounded function. Then f cannot
be uniformly continuous.

False: Let f(x) = x. f is unbounded, but it is uniformly continuous. Indeed, for all
ε > 0 let δ = ε. Then whenever x, y ∈ R satisfy |x − y| < δ we have |f(x) − f(y)| =
|x− y| < δ = ε.
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(c) Statement: Let I = [−1, 1] and f : I → R be a continuous function. If {xn} ⊂ I is
a maximizing sequence (limn→∞ f(xn) = supI f) then {xn} converges in I.

False: Let f(x) = x2. Then f has two maxima at the endpoints of the interval.
Then xn = (−1)n is a maximizing sequence because lim

n→∞
f(xn) = lim

n→∞
1 = 1 = sup

I
f .

However, xn = (−1)n does not converge.

4. Define: {Sn} is a Cauchy Sequence. Consider the partial sums Sn =

n∑
k=1

(−1)kk

4k
. Prove

that the sequence {Sn} is convergent.

{Sn} is a Cauchy Sequence if for all ε > 0 there is an N ∈ R such that

|Sℓ − Sm| < ε whenever ℓ,m ∈ N satisfy ℓ > N and m > N .

To prove that {Sn} is convergent, it suffices to show that it is a Cauchy Sequence. We shall
use the fact that k ≤ 2k for all k ∈ N, which we proved when discussing induction. Choose

ε > 0. Let N =
ln( 1

ε )
ln 2 . For any ℓ,m ∈ N such that ℓ,m > N we either have ℓ = m in which

case |Sℓ − Sm| = 0 < ε or ℓ ̸= m. WLOG we may assume ℓ > m because otherwise we may
swap the roles of ℓ and m. Then

|Sℓ − Sm| =

∣∣∣∣∣
ℓ∑

k=1

(−1)kk

4k
−

m∑
k=1

(−1)kk

4k

∣∣∣∣∣ =
∣∣∣∣∣

ℓ∑
k=m+1

(−1)kk

4k

∣∣∣∣∣ ≤
ℓ∑

k=m+1

|(−1)kk|
4k

=

ℓ∑
k=m+1

k

4k
≤

ℓ∑
k=m+1

2k

4k
=

ℓ∑
k=m+1

1

2k
=

1

2m+1

ℓ−m−1∑
k=0

1

2k

=
1

2m+1
·
1−

(
1
2

)ℓ−m

1− 1
2

≤ 1

2m
<

1

2N
= ε.

We have used that formula for a geometric sum. If |r| < 1 then

p∑
k=0

rk =
1− rp+1

1− r
.

5. Let D ⊂ R and f : D → R. State the definition: f is uniformly continuous in D. Let

f(x) =
x2

1 + x
. Determine whether f is uniformly continuous on D = (0,∞) and prove your

answer using only your definition in (a).

f is a uniformly continuous on D if for all ε > 0 there is an δ > 0 such that

|f(x)− f(y)| < ε whenever x, y ∈ D satisfy |x− y| < δ.

We show that f(x) =
x2

1 + x
is uniformly continuous on (0,∞). To see it, choose ε > 0. Let

δ = ε. For any x, y ∈ (0,∞) such that |x− y| < δ we have

|f(x)− f(y)| =
∣∣∣∣ x2

1 + x
− y2

1 + y

∣∣∣∣ = ∣∣∣∣x2(1 + y)− y2(1 + x)

(1 + x)(1 + y)

∣∣∣∣ = |x2 − y2 + x2y − xy2|
(1 + x)(1 + y)

=
|(x+ y + xy)(x− y)|

(1 + x)(1 + y)
≤ 1 + x+ y + xy

(1 + x)(1 + y)
|x− y| = |x− y| < δ = ϵ.
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