Math 3210 § 2. Second Midterm Exam Name: Golutions
Treibergs October 5, 2011

1. Let {an}nen be a real sequence and L € R. State the definition: L = lim an. Guess the limit.

Then use the definition of limit to prove that your guess is correct. L = lim \F

The real sequence {a,} converges to L € R if for every € > 0 there is an N € R such that
|an, — L| < &€ whenever n > N.
We guess L = 1. Choose ¢ > 0. Let N = e~2. For any n > N we have
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2. Let E C R be a nonempty subset and m € R. State the definition: m = inf E. (m is also
called the greatest lower bound of E.) Consider the set E = {B :peNandqe€ N}. Find inf B
q

and prove that it is the infimum.

m is the greatest lower bound of a nonempty set E if (1) it is a lower bound, namely
(Vz € E)(m < z) and (2) it is the greatest of lower bounds, namely (Ve > 0)(3z € E)(z < m+e).

We show that 0 = inf E where E = {p/q : p,q € N}. To see that 0 is a lower bound choose
xr € E. Hence x = p/q for some p,q € N. But p > 0 and ¢ > 0, hence ¢~ > 0 which implies
z =pg~! > 0. Thus we have shown 0 < z for all € E.

To see that 0 is the greatest of lower bounds choose € > 0. Hence e ! > 0. By the Archimedean
Property, there is an ¢ € N so that ¢ > 7!, hence 1/¢ < ¢. Let p = 1. Then there is z € E,
namely = p/q = 1/q < €. Thus we have shown for any € > 0 there is z = p/q € F such that
x < 0+ € so no number greater than zero is an upper bound.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

a. STATEMENT: If x,y € R are such that x # y and y # 0 then yt+z < 1y |+| m
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FALSE. Let z =1,y =2 s0 vyt _ ‘+‘ = 3 which exceeds |y| + || = 121+ 1] = 1.5.
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b. STATEMENT: Let {a,} be real, convergent sequences such that a,, is irrational for alln € N.
Then lim a,, is irrational.

n—oo
V2

FALSE. Let a, = —. Then a, is irrational as it is the product of an irrational v/2 and a

n
nonzero rational 1/n. However a,, — 0 as n — oo but 0 is rational.
c. STATEMENT: If f: R — R be a bounded function, then i%ff <sup f.
R

TRUE. Let E = {f(z) : x € R}. Then f(0) € E. Since i%ff = inf E is a lower bound for F
we have i%ff < f(0). Since sup f = sup E is an upper bound for E we have f(0) < sup f. Thus
R R

inf f < £(0) < sup f.
R R



The Axioms for a Field F' with binary operations + and -.
Al. z4+y=y+aforal z,y € F
A2. 24+ (y+2)=(x+y)+zforal a,yz e F,;
A3. There is an element 0 € F' such that 0 + x = x for all x € F}
A4. For every x € F there is an element —z such that z + (—z) = 0;
Ml. zy = yx for all z,y € F;
M2. z(yz) = (zy)z for all x,y,z € F;
M3. There is an element 1 € F' such that 1 # 0 and 1z = z for all x € F
M4. For each non-zero x € F there is an element ! such that z7'x = 1;

D. z(y+2) =ay+xz for all z,y,z € F.

4. Let x,y # 0 be elements of the field F. Hence also xy # 0. Using just the axzioms of a field,
show that (zy)~! = a1y~ L.

eyt =12y h M3. Multiplicative Identity
= [(zy) M (zy)] (2" y™h) M4. Multiplicative Inverse
= (xy) H(zy)(zy™H)] M2. Associativity of Multiplication
= (zy) M(yz)(z "y~ )] M1. Commutativity of Multiplication
= (zy) M((yz)z My ™Y M2. Associativity of Multiplication
(zy) H(y(zz™))y ™Y M2. Associativity of Multiplication
(zy) (y(z™ )y M1. Commutativity of Multiplication
(zy) H(y)y ™ M4. Multiplicative Inverse
(zy) " (Ay)y ™' M1. Commutativity of Multiplication
= (zy) Hyy™ Y M3. Multiplicative Identity
= (zy) y ] MI1. Commutativity of Multiplication
= (zy) 11 M4. Multiplicative Inverse
= 1(zy)™? M1. Commutativity of Multiplication
= (zy)~! M3. Multiplicative Identity

5. Let E'C R be a nonempty subset. State the definition: E is not bounded above. Consider the

3
set B = o :n € N3. Show that E is not bounded above.
nZ+2

The nonempty real set E is not bounded above if for every M € R there is an = € E such
that M < z, i.e., (VM € R)(Iz € E)(M < x).

3
To show that E = {2n+2 :n € N 3 is not bounded above, choose M € R. By the Archimedean
n
Property, there is an n € N such that n > M + 2. For this n, because n > 1 we have n? > n so
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2n+ 5 for this n such that
n

Thus we have shown for any M € R there is z € F, namely x =
M < x.



