Name: Solutions
March 4, 2015

Math 3210 § 1. Second Midterm Exam

Treibergs

1. Let {an} be a real sequence and L € R. State the definition: a, — L as n — co. Find the
limit. Using just the definition, prove that your answer is correct.
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The real sequence {a,} is said to converge to L € R if for every € > 0 there is an N € R
so that
n> N.

la, — L] < ¢ whenever

Using the main theorem about limits, we can determine the limit.
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To give a proof using only the definition, choose € > 0. Let N = max {19, 5}' Then

for any n € N such that n > N we have since n > N > 19 that
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. Suppose that {an} is a real sequence and o, B € R. Suppose that the sequence converges
an — a as n — oo and the terms satisfy ap, < B for all n € N. Show that a < .

We will show that for every ¢ > 0 we have a < 5+ ¢ from which a < g follows. Let € > 0
be arbitrary. By the convergence a,, — a as n — oo, there is an N € R such that

(1)

By the Archimedean Property, there is an ng € N such that ng > N. For this ng we have
using an, < 8 and (1),

lan, —al <€ whenever n > N.

a=anpy + (@0 —any) < apy + a0 —an,| <P +e

as to be shown.



3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) STATEMENT: Let f,g : R — R be two bounded functions. Then sup(f —g) =
R
—inf g.
sgpf infg

FALSE. Take f(z) = g(x) = sinx which are bounded functions. Then f —g = 0 so the
left side is zero. On the other hand supg f = 1 and infgr g = —1 so that the right side
is1—(—1)=2#0.

(b) STATEMENT: Suppose that {a,} is a real sequence which has no convergent subse-
quence. Then {a,} is unbounded.

TRUE. This is the contrapositive of the Bolzano Weierstrass Theorem: Let {a,} be a
real sequence. If {a,} is bounded, then {a,} has a convergent subsequence.

(c) STATEMENT: Suppose for each n € N there are real numbers a, and b, such that

1
0<a, <b, <1 and that b, — a, = T Then ﬂ [@n, by] # 0.
neN
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FALSE. Take I} = [0, 2], I, = [4, 1} and I,, = [O, Qn] forn>3. Then 1 NIy =0
SO ﬂ I,, = (). The Nested Intervals Theorem does not apply since the hypothesis of

neN
nested is missing.

4. Let b, be a sequence of —1’s, 0’s and 1’s and define the numbers
n
=3 gﬁ
k=1
State the definition: {a,} is a Cauchy Sequence. Prove that the sequence {a,} converges.
The real sequence {ay,} is a Cauchy Sequence if for every € > 0 there is an N € R such that
|an, —a¢| < e whenever n > N and £ > N.

To show that the given a,, — a as n — oo for some a € R we show that {a,} is a Cauchy
log(2¢)
log 3
that n > N and ¢ > N we have either ¢ = n in which case |a, —a¢| =0 < e or £ # n. By
swapping the roles of ¢ and n if necessary, we may assume that ¢ < n. Then since |b| < 1
for all k and ¢ > N,

Sequence, thus is convergent. Choose ¢ > 0. Let N = . For any n,¢ € R such
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where we have used E rk =
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5. Let the real sequence be defined recursively. Show that the sequence {an} s bounded above.
Show that there is L € R so that the sequence converges a,, — L as n — co. Find L.

2 4
Gn + for all n € N.

a; =1, pt1 =

We show that the sequence is bounded above, a,, < M = 2 for all n, by induction. (Any
M > % will work.) In the base case a1 = 1 < 2 holds. In the induction case, we assume
that for some n € N we have a,, < 2. Then by the recursion
2 n 4 < 2 94 4 8 <9
Opt1 = =Qp + = < — - - =-<2.
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Thus the induction case holds as well. By mathematical induction, a, < 2 for all n € N.

To show that {a,} converges to some L € R, we show that a,, is increasing. Since it is
also bounded above, L = lim,, . a, exists by the Monotone Convergence Theorem. To see
that a,, is increasing we show that a,41 > a, for all n € N using induction. In the base

case,

2 .42 .4 6
Ao = —a = . R
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S0 ag > a1 = 1. In the induction case, we assume that a, 1 — a, > 0 for some n € N. By
the recursion and induction hypothesis
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Ap+2 — Qpy1 = gan+1 + 5 - 50477, + 5 = g(an+1 — an) > 0.

Hence the induction step holds as well, and we conclude that a,4+1 > a, for all n € N by
mathematical induction.

To find the limiting value, we pass the recursion equation to the limit.
. . 2 4 2 4
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Solving yields L = 3



