Math 3210 § 1. Second Midterm Exam Name: Golutions
Treibergs March 1, 2017

1. Consider the subset E C R. State the definition: S = sup E for some S € R (same as
S=1bkFE.) Find sup E. Using just the definition, prove that your answer is correct.

p-{Zt mnen)
m+n
S = sup F is defined to be a real number which is (1) an upper bound: (Vz € E)(xz < 5)
and (2) the least of all upper bounds: (Ve > 0)(3z € E)(S — e < x).

We claim S = 1 is the least upper bound of E. To see that it is an upper bound, every
r € F has the form for some m,n € N,

m-—-n m-+n

m-+n m-4+n

To see that it is least, choose ¢ > 0. By the Archimedean Property, there is m € N such
2

that m > —. Taking this m and n =1 € N we see that the element z € E given by
€
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2. Suppose that {a,} is a real sequence. State the definition: A € R is the limit of the sequence
A = lim,, o, a,. Suppose the sequence converges to a real number A = hm G- Show using

just the definition of limit (and NOT the Main Limit Theorem) that {b } also converges,
where b, = (a, + 1)2.

A = lim,,_, a, means that for every £ > 0 there is an N € R such that

la, — A| < e whenever n > N.

We argue that b, — (A+1)? as n — oco. Since {a, } converges, it is bounded, namely, there
is M € R such that |a,| < M for all n. Choose € > 0. By the convergence a,, — A, there
is N € R be so large that

€
anp — Al < ——m—— whenever n > N.
| | M+]Al+2

Then for the same N, if n > N we have

bn — (A+1)?| = |(an + 1) = (A+1)?|
= a2 +2a, +1— (A + 24+ 1)
= |az — A% + 2a, — 24]
= |(an + A)(an, — A) + 2(a, — A)]
=|(an + A+ 2)(an — A)|
=lan +A+2||a, — A|
< (lan| + [A] 4 2) lan — A
< (M +|A| +2) |a, — A

3

Hence b, — (A +1)% as n — oo.



3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Suppose the real sequence {ay} is not bounded above. Then lim a, = occ.
n—oo

FALSE. The sequence as, = n and as,_1 = 1 is not bounded above but does not tend
to infinity. It is not true that given any large number B > 1, that there is an N such
that a,, > B for all n > N because every other term is one.

(b) Let I, = [an,by,] be closed, bounded and nested intervals: I, D I,11 for all n. Then
ﬂ I, consists of a single point.
neN

1 1 ~
FALSE. Take the intervals I,, = [—, 1+ } . Then ﬂ I, = [0,1], not a single point.
n n
n=1

(¢c) Suppose that the real sequence {a,} converges to the real number a = lim a,. Ifa <b
n—oo

then a, < b for all but finitely many n.
TRUE. Since a,, — a, for e = b—a > 0 there is N € R such that |a,, —a| < € whenever
n > N. For these n,

an=a+ (ap —a)<a+|a, —a|<at+e=a+(b—a)=0.
Thus a,, < b may fail only for the finitely many n < N.

4. Consider the sequence of products

P%<1+;>(1%;><1+;J~~(1%;>!i(l+;>

1
Show that for all n, P, < 4 (1 - 2n> . Show that the real limit L = lim,,_ o, P, exists.

o 1
(This defines the infinite product H (1 + 21) )
i=1

1
We prove P, <4 <1 — 2n> by induction. In the n = 1 base case,

1 3 1
Pi=14+-=2<2=4(1-2).
=ity TS ( 2>

For the induction case, assume the inequality holds for some n € N. Then, by the induction
hypothesis,

proving the induction step. Hence, by induction, the inequality holds for 11 n € N.

{P,} is increasing since P; > 0 and each P,y is obtained from P, by multiplying by
1+2 (D) > 1. By (a) the sequence is bounded P, < 4 for all n. Hence by the Monotone
Convergence Theorem, the finite limit L = lim P, exists. In fact % =P <L <4

n—oo



5. State the definition: {S,} is a Cauchy Sequence. Prove that the finite limit L = lim S,

n—oo
exists, where the S,, is the partial sum

" ksink
Sn=)
k=1

{Sp} is a Cauchy Sequence if for every € > 0 there is an N € R such that

|S; — Sl < e whenever 4,5 > N.

We prove that the partial sum sequence {S,} is a Cauchy Sequence, hence converges.

2
Choose € > 0. Let N € R be so large that 2 (3) < e. Assume 4,5 > N. If i = j then

|S; — S — j| = 0 < e. Without loss of generality we may assume i > j, otherwise just swap
the roles of ¢ and j. Using |sinn| < 1 and n < 2" for all n,

S
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We have used the formula for a geometric sum with r = % Ifi > j,

A T]+1 _ T2+1
T = —m—---
Z_ 1—r
k=j+1



