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Final Exam Name: Solutions
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1. Let f : [0, 1] → [0, 1] be continuous. Show that f has a fixed point: there is c ∈ [0, 1] such
that f(c) = c. Assuming in addition that f is differentiable at x and |f ′(x)| < 1 for all
x ∈ (0, 1), show that the fixed point is unique.

The existence of a fixed point is one of the standard applications of the Intermediate Value
Theorem. Let g(x) = f(x)−x. g(x) is a continuous function on [0, 1] because both f(x) and
x are continuous. If g(0) = 0 then c = 0 is the fixed point because f(0)− 0 = 0. If g(1) = 0
then c = 1 is a fixed point since f(1)− 1 = 0. Otherwise f(0) > 0 and f(1) < 1 so g(0) > 0
and g(1) < 0. Thus y = 0 is intermediate between g(0) and g(1). By the Intermediate
Value Theorem, there is c ∈ (0, 1) such that g(c) = 0. For this c we have f(c)− c = 0 so c
is the desired fixed point.

The uniqueness of the fixed point follows from an application of the Mean Value Theorem.
Suppose for contradiction that there are two different fixed point c, d ∈ [0, 1] such that
f(c) = c and f(d) = d. We show that this is impossible under the additional hypotheses.
We may suppose c < d by swapping names, if necessary. Then, by assumption, f is
continuous on [c, d] because it is a subset of [0, 1] and it is differentiable on (c, d) because
this is a subset of (0, 1). Hence the hypotheses for the Mean Value Theorem hold. It says
that there is a ξ ∈ (c, d) such that

d− c = f(d)− f(c) = f ′(ξ)(d− c).

Taking absolute values and estimating,

|d− c| = |f ′(ξ)| |d− c| < 1 · |d− c|.

As |d− c| > 0, this is a contradiction.

2. Let f : R → R. Define the supremum of f , S = sup
x∈R

f(x). Find S = sup
x∈R

x2

x2 + 1
and

prove your result.

The supremum of f is an extended real number S. If f is not bounded above on R, then
the supremum supx∈R f(x) = ∞. If f is bounded above on R, then S ∈ R satisfies two
properties:

(1) S is an upper bound for f : (∀x ∈ R)(f(x) ≤ S), and,

(2) S is the smallest of upper bounds, or to put it another way, no smaller number is an
upper bound: (∀ε > 0)(∃x ∈ R)(f(x) > S − ε).

We claim that sup
x∈R

x2

x2 + 1
= 1. To see that 1 is an upper bound, we have x2 < x2 + 1 for

all x ∈ R so that
x2

x2 + 1
≤ 1 for all x ∈ R. To see that there are no smaller upper bounds,

choose ε > 0. Let x = 1√
ε
. For this x,

f(x) =
x2

x2 + 1
= 1− 1

x2 + 1
= 1− 1(

1√
ε

)2
+ 1

= 1− 1
1
ε + 1

= 1− ε

1 + ε
> 1− ε.
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) If x > 0 then xaxb = xa+b for any a, b ∈ R.

True. This fact depends on how functions xa are defined for arbitrary real numbers,
not just integers of rational numbers. We have

xa = exp(a log x)

so that the desired property follows from the corresponding property of the exponential
function which in turn depends on an addition formula for the integral that defines
natural logarithm. Indeed

xaxb = exp(a log x) exp(b log x) = exp(a log x+ b log x) = exp([a+ b] log x) = xa+b.

(b) For f : [−1, 0)∪ (0, 1]→ R, such that f is integrable on [−1,−ε] and on [ε, 1] for every

0 < ε ≤ 1, suppose lim
ε→0+

(∫ −ε
−1

f(t) dt+

∫ 1

ε

f(t) dt

)
= 0. Then the improper integral∫ 1

−1
f(t) dt exists and equals zero.

False. The limit is a Cauchy Principal Value which may exist without the function
being improperly integrable. For example if f(x) = x−3 then for 0 < ε ≤ 1 we have∫ −ε

−1

dt

t3
+

∫ 1

ε

dt

t3
=

[
− 1

2t2

]−ε
−1

+

[
− 1

2t2

]1
ε

=

[
− 1

2ε2
+

1

2

]
+

[
−1

2
+

1

2ε2

]
= 0

so the limit is zero but the function f(t) = t−3 is not improperly integrable. For the

improper integral

∫ 1

−1

dt

t3
to exist, both limits to the left and right of zero have to exist

by themselves, but neither do.

lim
ε→0+

∫ −ε
−1

dt

t3
= lim
ε→0+

[
− 1

2t2

]−ε
−1

= lim
ε→0+

[
− 1

2ε2
+

1

2

]
= −∞,

lim
δ→0+

∫ 1

δ

dt

t3
= lim
δ→0+

[
− 1

2t2

]1
δ

= lim
δ→0+

[
−1

2
+

1

2δ2

]
=∞.

(c) If f : R→ R is differentiable at all points, then f ′(x) is continuous for all x ∈ R.

False. The differentiability of f(x) at x = a implies the continuity of f at x = a, but
it says nothing about the continuity of the derivative. Here is the example discussed
in class:

f(x) =

{
x2 sin

(
1
x

)
, if x 6= 0;

0, if x = 0.

For x 6= 0 this is the composition of differentiable functions, so differentiable. At x = 0
we use the fact that |f(x)| ≤ x2 for all x so f is stuck between a rock and a hard place.
The difference quotients at zero satisfy∣∣∣∣f(x)− f(0)

x− 0

∣∣∣∣ =
|f(x)|
|x|

≤ x2

|x|
= |x|

which tends to zero as x → 0 so that f is differentiable at zero and f ′(0) = 0. Thus
f is differentiable at all points. However the derivative is not continuous at zero.
Computing the derivative at x 6= 0 we see that

f ′(x) = 2x sin

(
1

x

)
+ x2 cos

(
1

x

)(
− 1

x2

)
= 2x sin

(
1

x

)
− cos

(
1

x

)
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which does not have a limit as x → 0 so it doesn’t converge to f ′(0). Thus f ′ is not
continuous at x = 0.

4. Define: the real sequence {an} is a Cauchy Sequence. Show that the sequence {an} converges
to a real number, an → L as n → ∞ where an is defined recursively by starting with
a1, a2 ∈ R any two real numbers and

an =
an−1 + an−2

2
, for all n ≥ 3.

The sequence is a Cauchy Sequence if for every ε > 0 there is an N ∈ R so that

|am − an| < ε whenever m,n ∈ N are such that m > N and m > N .

We show that the given {an} is a Cauchy Sequence, thus convergent. To do this, we establish
the recursion for the difference of consecutive terms, as in the homework problem. Thus for
any n ≥ 2 we have

an+1 − an =
an + an−1

2
− an = −1

2
(an − an−1).

It follows by induction that for every n ≥ 1 we have

an+1 − an =

(
−1

2

)n−1
(a2 − a1)

so that for every n ≥ 1 we have

|an+1 − an| ≤
(

1

2

)n−1
|a2 − a1|.

Now it follows that {an} is a Cauchy Sequence. Choose ε > 0. Let N be so large that
( 1
2 )N−2|a2 − a1| < ε. Then for any m,n > N we have either m = n so |am − an| = 0 < ε

or n 6= m. By swapping names if necessary, we may assume that m > n. In this case, by
constructing the telescoping sum,

|am − an| = |(am − am−1) + (am−1 − am−2) + · · ·+ (an+1 − an)|
≤ |am − am−1|+ |am−1 − am−2|+ · · ·+ |an+1 − an|

≤

{(
1

2

)m−2
+

(
1

2

)m−3
+ · · ·+

(
1

2

)n−1}
|a2 − a1|

=

(
1

2

)n−1 m−n−1∑
k=0

(
1

2

)k
|a2 − a1|

=

(
1

2

)n−1 1−
(
1
2

)m−n
1− 1

2

|a2 − a1|

≤
(

1

2

)n−2
|a2 − a1|

<

(
1

2

)N−2
|a2 − a1| < ε.
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As a curiosity, which is not part of the answer, we can compute the limit.

L = lim
n→∞

an

= lim
n→∞

{(an − an−1) + (an−1 − an−2) + · · ·+ (a2 − a1) + a1}

= lim
n→∞

{
a1 +

n∑
k=2

(ak − ak−1)

}

= lim
n→∞

{
a1 +

n∑
k=2

(
−1

2

)k−2
(a2 − a1)

}

= lim
n→∞

a1 +

n−2∑
j=0

(
−1

2

)j
(a2 − a1)


= lim
n→∞

{
a1 +

1−
(
− 1

2

)n−1
1−

(
− 1

2

) (a2 − a1)

}

= a1 +
2

3
(a2 − a1) =

1

3
a1 +

2

3
a2.

Thus L is an average of the starting numbers, as we might have expected.

5. Let f, fn : R → R be functions for n ∈ N. Define: fn → f converges uniformly on R as
n→∞. Prove that the sequence {fn} converges uniformly on R as n→∞, where

fn(x) =
x

1 + nx2
.

fn → f converges uniformly on R if for every ε > 0 there is an N ∈ R so that

|fn(x)− f(x)| < ε whenever x ∈ R and n > N .

Sketch the functions! Here is the graph using Macintosh’s Grapher.

Figure 1: Sketch of f1, f2 and f3.

We have fn(0) = 0 for all n and if x 6= 0 then lim
n→∞

fn(x) = 0 so fn converges to f = 0

pointwise on R. If it converges uniformly then the limiting function has to be the same
f = 0.
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We claim that |fn(x)−0| ≤ 1√
n

for all x and n so that fn → 0 uniformly by the Weierstrass

M -test. We give two proofs of the claim.

First proof of the claim uses calculus. The function fn(x) is odd so we only need to prove
it for x ≥ 0. We note that lim

x→∞
fn(x) = 0 and fn(x) > 0 for 0 < x < ∞ so there is an

interior maximum. Differentiating,

d

dx
fn(x) =

(1 + nx2)− x · 2nx
(1 + nx2)2

=
1− nx2

(1 + nx2)2
.

It is zero only when x = ± 1√
n

so there is only one max. Thus

|fn(x)− 0| ≤
∣∣∣∣fn(± 1√

n

)∣∣∣∣ =

∣∣∣∣± 1√
n

∣∣∣∣
1 + n

(
± 1√

n

)2 =
1

2
√
n
≤ 1√

n
.

The second proof does the estimate one way for small x and another for large x. Indeed, if

|x| ≤ 1√
n

then

|fn(x)− 0| = |x|
1 + nx2

≤
1√
n

1 + 0
=

1√
n
.

If |x| > 1√
n

then
1

|x|
<
√
n so that

|fn(x)− 0| = |x|
1 + nx2

=

1
|x|

1
x2 + n

<

√
n

0 + n
=

1√
n
.

In both cases,

|fn(x)− 0| ≤ 1√
n

as claimed.

6. Let f : R→ R. Define: f is uniformly continuous on R. Suppose that |f(un)−f(vn)| → 0
as n → ∞ for any pair of real sequences such that |un − vn| → 0 as n → ∞. Show that f
is uniformly continuous on R.

f is uniformly continuous on R if for every ε > 0 there is a δ > 0 so that

|f(u)− f(v)| < ε whenever u, v ∈ R are such that |u− v| < δ.

The condition gives a sequential characterization of uniform continuity. Its proof is almost
the same as the proof that the sequential condition for continuity at a point a implies
continuity at a.

One proves the contrapositive statement: if f is not uniformly continuous on R then the
sequential condition does not hold. The negation of uniform continuity is: there is ε0 > 0
such that for every δ > 0 there are uδ, vδ ∈ R such that |uδ−vδ| < δ but |f(uδ)−f(vδ)| ≥ ε0.
Take δ = 1

n . Then there are sequences un, vn ∈ R such that

|un − vn| <
1

n
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so that |un − vn| → 0 as n→∞ but

|f(un)− f(vn)| ≥ ε0

so that |f(un)−f(vn)| does not converge to zero as n→∞. In other words, it is not the case
that |f(un)− f(vn)| → 0 as n→∞ for any pair of real sequences such that |un − vn| → 0
as n→∞.

7. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement. Let f , g be differentiable on (−1, 1) such that g(x) 6= 0 and g′(x) 6= 0

for all x ∈ (0, 1). If lim
x→0+

f ′(x)

g′(x)
= L then lim

x→0+

f(x)

g(x)
= L.

False. All of the hypotheses of l’Hôpital’s Rule are not met. e.g., taking f(x) = 2+x,
g(x) = 3 + x we have f and g differentiable, g and g′ nonzero on (0, 1) with

lim
x→0+

f ′(x)

g′(x)
= lim
x→0+

1

1
= 1 but lim

x→0+

f(x)

g(x)
= lim
x→0+

2 + x

3 + x
=

2

3
.

(b) Statement. If f : R → R is differentiable at 0 and f ′(0) > 0 then there is a δ > 0
such that f(x) > f(0) whenever 0 < x < δ.

True. Use the definition of differentiable: the limit exists and equals f ′(0) ∈ R:

lim
x→0

f(x)− f(0)

x− 0
= f ′(0).

Apply the ε− δ definition of limit: for every ε > 0 there is a δ > 0 so that∣∣∣∣f(x)− f(0)

x− 0
− f ′(0)

∣∣∣∣ < ε whenever x ∈ R such that 0 < |x− 0| < δ.

In particular, if we choose ε = f ′(0) and take the corresponding δ > 0 we have

f(x)− f(0)

x− 0
− f ′(0) > −ε if 0 < |x− 0| < δ.

In particular
f(x)− f(0)

x− 0
> f ′(0)− ε = 0 if 0 < x < δ.

Thus f(x)− f(0) > 0 if 0 < x < δ.

(c) Statement. If f : [0, 1]→ R is integrable, then
d

dx

∫ x

0

f(t) dt = f(x) for all x ∈ (0, 1).

False. In the Fundamental Theorem of Calculus II, the integral is differentiable
only at points of continuity of f . So to answer the question, we need to construct a
counterexample. Let

f(x) =

{
−1, if x ≤ 1

2 ;

1, if x > 1
2 .
.

Then f is integrable and

F (x) =

∫ x

0

f(t) dt =

∣∣∣∣x− 1

2

∣∣∣∣− 1

2

which is not differentiable at x = 1
2 .
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8. Let f be a bounded function on the closed bounded interval [a, b]. Define what it means for
f to be integrable on [a, b] and what the Riemann integral of f on [a, b] is. Complete the
statement of the theorem.

[Of several possible answers, select the one you prefer for the third part of the problem.]

A function f is integrable if its upper integral equals its lower integral∫ b

a

f(t)dt =

∫ b

a

f(t)dt.

The integral

∫ b

a

f(t)dt is then defined to be their common value. The upper and lower

integrals are defined to be∫ b

a

f(t)dt = inf
P
U(f, P ),

∫ b

a

f(t)dt = sup
P
L(f, P ),

where inf and sup are taken over all partitions P = {a = x0 < x1 < · · · < xn = b} of [a, b]
and where the upper and lower sums are

U(f, P ) =

n∑
k=1

Mk(f)(xk − xk−1), L(f, P ) =

n∑
k=1

mk(f)(xk − xk−1),

where Ik = [xk−1, xk] is the kth interval of P and

Mk(f) = sup
Ik

f, mk(f) = inf
Ik
f.

Theorem. The Riemann integral of f on [a, b] exists if and only if

for every ε > 0 there is a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

Let 0 ≤ an ≤ 1 be a sequence such that an → 0 as n→∞. Using the theorem above, show
that f is integrable on [0, 1], where

f(x) =

{
1, if x = an for some n ∈ N;

0, if x 6= an for all n ∈ N.

Draw the picture!

Figure 2: Sketch of function.
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The function is discontinuous at every ai and at 0. The idea is to take a partition that
lumps infinitely many ai’s in the subinterval [0, δ] and then surrounds the finitely many
jumps at the remaining ai’s by a tiny intervals [ai− η, ai + η]. Mk(f)−mk(f) = 1 for these
intervals and is zero for all the others, making the total sum small.

Figure 3: Intervals where Mk(f)−mk(f) = 1.

Choose ε > 0. Choose 0 < δ < ε
2 such that δ 6= ai for all i. Since ai → 0 there are only

finitely many ai’s greater than δ. Call them ai1 , ai2 , . . . , aiJ . Now pick η so small that

η <
ε

4J + 1
and such that all of the intervals

[
aij − η, ai+j + η

]
either coincide (in case some aij = aij′ ) or are pairwise disjoint from each other and disjoint
from [0, δ]. Let the partition be

P = {0, δ, 1} ∪
{
aij − η, ai+j + η

}
j=1,...J

It follows for all intervals of the form Ik = [0, δ] or Ik = [aij − η, aij + η] we have f(ai) = 1
and f(x) = 0 for points close to ai so Mk(f) − mk(f) = 1. For all other intervals like
Ik = [δ, aiJ ] or Ik = [aij +η, aij+1

−η], the function is dead zero, so that Mk(f)−mk(f) = 0
for this second type or interval. Put ∆k = length(Ik). It follows that

U(f, p)− L(f, p) =
∑

Ik is type I

(Mk(f)−mk(f)) ∆k +
∑

Ik is type II

(Mk(f)−mk(f)) ∆k

=
∑

Ik=[0,δ]

(Mk(f)−mk(f)) ∆k +
∑

Ij=[aij−η,aij+η]

(Mj(f)−mj(f)) ∆j + 0

= 1 · δ + J · 1 · 2η

<
ε

2
+

2Jε

4J + 1
< ε.

By the boxed theorem, f is integrable on [0, 1].
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9. Suppose that g : [a, b] → R is an integrable function on a closed bounded interval. Show
that

lim
x→b−

∫ x

a

g(t) dt =

∫ b

a

g(t) dt.

This problem shows that an integrable function is also improperly integrable.

Since g is integrable on [a, b], it is bounded: there is M ∈ R such that |g(x)| ≤ M for all
x ∈ [a, b]. Integrable also implies for every a ≤ x ≤ b we have∫ x

a

g(t) dt+

∫ b

x

g(t) dt =

∫ b

a

g(t) dt.

It follows that ∣∣∣∣∣
∫ b

a

g(t) dt−
∫ x

a

g(t) dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

x

g(t) dt

∣∣∣∣∣
≤
∫ b

x

|g(t)| dt

≤
∫ b

x

M dt = M(b− x)

which tends to zero as x→ b−.
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