
Math 3220 § 1.
Treibergs −−σιι

Sample Problems for Third Midterm Name: Problems With Solutions

April 5, 2005

Questions 1–6 appeared in my Fall 2000 and Fall 2001 Math 3220 exams.
(1.) Let E = {(x, y) ∈ R2 : x2 + y2 ≤ 2}. Using only the definition of connectedness, the fact that intervals
are the only connected sets connected in R1, and properties of continuous functions, show that E is a connected
subset of R2.

(2.) For each part, determine whether the statement is TRUE or FALSE. Give a reason if true, a counterexample
if false.

(a.) Let f : Rn → Rm be continuous and G ⊆ Rm be open. Then for any point x ∈ f−1(G) there is a δ > 0
so that the open δ-ball about x, Bδ(x) ⊆ f−1(G).

(b.) Let Ω ⊆ Rn be open and f : Ω → Rm be continuous. Then f(Ω) is open.
(c.) Let f : Rn → Rm be continuous and E ⊆ Rm. Suppose E is connected in Rm. Then f−1(E) is

connected in Rn.

(3.) Let f : Rn → Rn be differentiable at a ∈ Rn.
(a.) Let g : Rn → R be defined by g(x) = x • f(x), (dot product.) Find the total derivative (differential)

Dg(a)(h) where h ∈ Rn.
(b.) Without using the product theorem, prove your answer.

(4.) For each part, determine whether the statement is TRUE or FALSE. If the statement is true, give a
justification. If the statement is false, give a counterexample. You may use theorems.

(a.) Let f : R2 → R be continuous. Suppose that for all (x, y) ∈ R2 both

lim
h→0

f(x + h, y)− f(x, y)
h

and lim
k→0

f(x, y + k)− f(x, y)
k

exist. Then f is differentiable at (1, 2).
(b.) Suppose f : R2 → R is a C2 function for which the third partial derivatives fxxy(x, y) exist for all

(x, y) ∈ R2 such that fxxy(x, y) is continuous at (0, 0). Then fxyx(0, 0) and fyxx(0, 0) exist and are equal
fxxy(0, 0) = fxyx(0, 0) = fyxx(0, 0).

(5.) Let K ⊆ R2 be a compact set. Suppose {xn}n∈N ⊆ K is a sequence in K which is a Cauchy sequence in
R2. Then there is a point k ∈ K so that xn → k as n →∞.

(6.) Suppose f ,g : R2 → R2. Assume that g is differentiable at x0 ∈ R2 and that for some α > 1 and M < ∞
we have

‖f(x)− g(x)‖ ≤ M‖x− x0‖α

for all x ∈ R2. Show that f is differentiable at x0 and that Df(x0) = Dg(x0).

(7.) Suppose Si ⊆ Rn are closed nonempty sets which are contained in the compact set K. Assume that the
subsets form a decreasing sequence S1 ⊇ S2 ⊇ S3 ⊇ · · · . Then they have a nonempty intersection

⋂
i∈N Si 6= ∅.

(8.) E = [0, 1] ∩Q, the set of rational points between zero and one, is not compact.

(9.) Theorem. Suppose E ⊆ Rn is bounded and f : E → Rm is uniformly continuous. Then f(E) is bounded.
This would not be true if “uniformly continuous” were replaced by “continuous.”

(10.) Theorem. Let S = [0, 1]× [0, 1] ⊆ R2 and F : S → R be continuous. Then F is not one to one.

(11.) TRUE or FALSE? If true, give a justification. If false, give a counterexample. You may use theorems.
(a.) Let f : R2 → R. Suppose that both iterated limits exist and are equal. The the limit exists.

L = lim
x→0

lim
y→0

f(x, y) = lim
y→0

lim
x→0

f(x, y) =⇒ L = lim
(x,y)→(0,0)

f(x, y)

(b.) Suppose f : R3 → R2 is given below. Then f is differentiable on R3.

f

 x
y
z

 =
(

xy + x2z3

x4 + y + y5z6

)
.
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Solutions.
(1.) Let E = {(x, y) ∈ R2 : x2 + y2 ≤ 2}. Using only the definition of connectedness, the fact that intervals
are the only connected sets connected in R1, and properties of continuous functions, show that E is a connected
subset of R2.

The set E is path connected. For example if x, y ∈ E then σ : [0, 1] → E given by σ(t) = (1− t)x + ty is a
continuous path in E. In fact, for 0 ≤ t ≤ 1 and using the Schwarz Inequality, ‖f(t)‖2 = (1− t)2‖x‖2 + 2t(1−
t)x · y + t2‖y‖2 ≤ (1 − t)2‖x‖2 + 2t(1 − t)‖x‖‖y‖ + t2‖y‖2 = ((1− t)‖x‖+ t‖y‖)2 < (2(1− t) + 2t)2 = 4 so
f(t) ∈ E. The components of σ are polynomial so σ is continuous.

Since E is path connected, it is connected. If not there are relatively open sets A1, A2 in E so that A1 6= ∅,
A2 6= ∅, A1 ∩A2 = ∅ and E = A1 ∪A2. Choose x ∈ A1 and y ∈ A2 and a path σ : [0, 1] → E so that σ(0) = x
and σ(1) = y. σ−1(A1) and σ−1(A2) are relatively open in [0, 1], are disjoint because A1 ∩ A2 = ∅ implies
σ−1(A1) ∩ σ−1(A2) = σ−1(A1 ∩ A2) = ∅, are nonempty because there are x ∈ σ−1(A1) and y ∈ σ−1(A2) and
[0, 1] ⊆ σ−1(A1)∪ σ−1(A2) = σ−1(A1 ∪A2) = σ−1(E). Thus σ−1(A1) and σ−1(A2) disconnect [0, 1], which is
a contradiction because [0, 1] is connected.
(2.) For each part, determine whether the statement is TRUE or FALSE.
(2a.) Statement. Let f : Rn → Rm be continuous and G ⊆ Rm be open. Then for any point x ∈ f−1(G) there
is a δ > 0 so that the open δ-ball about x, Bδ(x) ⊆ f−1(G).

TRUE! Since G is open, there is ε > 0 so that Bε(f(x)) ⊆ G. But, since f is continuous, for all positive
numbers, such as this ε > 0, there is a δ > 0 so that for all z ∈ Rn, if ‖z − x‖ < δ then ‖f(z)− f(x)‖ < ε. We
claim that for this δ > 0, Bδ(x) ⊆ f−1(G). To see it, choose z ∈ Bδ(x) to show f(z) ∈ G. But such z satisfies
‖z − x‖ < δ so that ‖f(z)− f(x)‖ < ε or in other words, f(z) ∈ Bε(f(x)) ⊆ G.
(2b.) Statement. Let Ω ⊆ Rn be open and f : Ω → Rm be continuous. Then f(Ω) is open.

FALSE! Counterexample: the constant function f(x) = c is continuous but f(Ω) = {c} is a singleton set
which is not open.
(2c.) Let f : Rn → Rm be continuous and E ⊆ Rm. Suppose E is connected in Rm. Then f−1(E) is connected
in Rn.

FALSE! Counterexample: f(x) = x2 is continuous from R to R but f−1([1, 4]) = [−2,−1] ∪ [1, 2].
(3.) Let f : Rn → Rn be differentiable at a ∈ Rn. Let g : Rn → R be defined by g(x) = x • f(x), (dot
product.) Find the total derivative (differential) Dg(a)(h) where h ∈ Rn. Without using the product theorem,
prove your answer.

The product rule gives Dg(x)(h) = D(x•f(x))(h) = h• g(x)+x•Df(x)(h). This is the differential because

lim
h→0

‖g(x + h)− g(x)−Dg(x)(h)‖
‖h‖

= lim
h→0

‖(x + h) • f(x + h)− x • f(x)− h • f(x)− x •Df(x)(h)‖
‖h‖

= lim
h→0

‖x • (f(x + h)− f(x)−Df(x)(h)) + h • (f(x + h)− f(x))‖
‖h‖

≤ lim
h→0

{
‖x‖‖f(x + h)− f(x)−Df(x)(h)‖

‖h‖
+
‖h‖
‖h‖

‖f(x + h)− f(x)‖
}

= ‖x‖ · 0 + 1 · 0 = 0.

(4a.) Let f : R2 → R be continuous. Suppose that for all (x, y) ∈ R2 both

lim
h→0

f(x + h, y)− f(x, y)
h

and lim
k→0

f(x, y + k)− f(x, y)
k

exist. Then f is differentiable at (1, 2).
FALSE! The two limits are nothing more than fx(x, y) and fy(x, y), the partial derivatives. There are functions

where the partial derivatives exist at all points, but the function is not differentiable. (If it were known that fx

and fy are continuous at some point a ∈ R2, then our theorem says that the function would be differentiable
at a.) An example of such a function is

f(x, y) =

{
(x−1)2(y−2)

(x−1)2+(y−2)2 , if (x, y) 6= (1, 2);

0. if (x, y) = (1, 2).
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Away from (1, 2), the denominator avoids zero, so the partial derivatives exist and are continuous, hence f is
differentiable. Also, observe that f(1, y) = f(x, 2) = 0 for all x, y. Hence fy(1, y) = fx(x, 2) = 0 so the partial
derivatives exist at (1, 2). If the function were differentiable at (1, 2), then the vanishing of the partial derivatives
implies that the differential would have to be T (h, k) = 0 all h, k. But the limit

lim
(h,k)→(1,2)

‖f(1 + h, 2 + k)− f(1, 2)− T (h, k)‖
‖(h, k)‖

= lim
(h,k)→(1,2)

‖f(1 + h, 2 + k)‖
‖(h, k)‖

does not exist. To see this, consider the first approach (h, k) = (t, 0) as t → 0. The numerator vanishes so
along this approach the limit would be zero. Then consider the second approach (h, k) = (t, t) for t > 0. Then
f(1+ t, 2+ t) = t/2 and ‖(t, t)‖ =

√
2|t|. Then the difference quotient tends to 1/

√
2. Since the two approaches

have different limits, there is no two dimensional limit: the function is not differentiable at (1, 2).
(4b.) Suppose f : R2 → R is a C2 function for which the third partial derivatives fxxy(x, y) exist for all
(x, y) ∈ R2 such that fxxy(x, y) is continuous at (0, 0). Then fxyx(0, 0) and fyxx(0, 0) exist and are equal
fxxy(0, 0) = fxyx(0, 0) = fyxx(0, 0).

TRUE! This is just an application of the equality of cross partials theorem to fx and fy which are C1 by
assumption, since f is C2. We are given that (fx)xy exists and is continuous at (0, 0). But, this is sufficient to
be able to assert the existence of the other mixed partial derivative, and that it is equal to the first at the point
(fx)xy(0, 0) = (fx)yx(0, 0). But since f ∈ C2(R2), we also have that fxy = fyx for all of R2. Hence, all third
derivaives exist and are equal fxxy(0, 0) = (fx)xy(0, 0) = (fx)yx(0, 0) = (fxy)x(0, 0) = (fyx)x(0, 0) = fyxx(0, 0).
(5.) Let K ⊆ R2 be a compact set. Suppose {xn}n∈N ⊆ K is a sequence in K which is a Cauchy sequence in
R2. Then there is a point k ∈ K so that xn → k as n →∞.

Since {xn} is Cauchy, it is convergent in R2: there is a k ∈ R2 so that xn → k as n → ∞. But as K is
compact it is closed. But a closed set contains its limit points, so k ∈ K.
(6.) Suppose f ,g : R2 → R2. Assume that g is differentiable at x0 ∈ R2 and that for some α > 1 and M < ∞
we have

‖f(x)− g(x)‖ ≤ M‖x− x0‖α

for all x ∈ R2. Show that f is differentiable at x0 and that Df(x0) = Dg(x0).
It suffices to show that the difference quotient limits to zero. Now,

lim
h→0

‖f(x + h)− f(x)−Dg(x)(h)‖
‖h‖

=

= lim
h→0

‖f(x + h)− g(x + h)− f(x) + g(x) + g(x + h)− g(x)−Dg(x)(h)‖
‖h‖

≤ lim
h→0

‖f(x + h)− g(x + h)‖+ ‖g(x)− f(x)‖+ ‖g(x + h)− g(x)−Dg(x)(h)‖
‖h‖

≤ lim
h→0

{
‖h‖α + ‖0‖α

‖h‖
+
‖g(x + h)− g(x)−Dg(x)(h)‖

‖h‖

}
= lim

h→0
‖h‖α−1 + lim

h→0

‖g(x + h)− g(x)−Dg(x)(h)‖
‖h‖

= 0 + 0.

(7.) Theorem. Suppose Si ⊆ Rn are closed nonempty sets which are contained in the compact set K. Assume
that the subsets form a decreasing sequence S1 ⊇ S2 ⊇ S3 ⊇ · · · . Then they have a nonempty intersection⋂

i∈N Si 6= ∅.
Proof.Suppose it is false. Then

⋂
i∈N Si = ∅. Let Ui = Rn\Si which are open since Si are closed. By

deMogran’s formula, ∪iUi = ∪i (Rn\Si) = Rn\ (∩iSi) = Rn\∅ = Rn. Thus {Ui} is an open cover of K. Since
K is compact, there are finitely many i1, i2, . . . , in so that K ⊆ Ui1 ∪ · · · ∪Uin

= (Rn\Si1)∪ · · · ∪ (Rn\Sin
) =

Rn\ (Si1 ∩ · · · ∩ Sin
) = Rn\Sp where p = max{i1, . . . , in} since the Si’s are nested. But this says K ∩ Sp = ∅

which contradicts the fact that Sp is a nonempty subset of K.
(8.) E = [0, 1] ∩Q, the set of rational points between zero and one, is not compact.

Proof. We find an open cover without finite subcover. Let c = 1/
√

2 or any other irrational number c ∈ [0, 1].
Consider the sets U0 = (c,∞) and Ui = (−∞, c − 1/i) for i ∈ N. Then C = {Ui}i=0,1,2,... is an open cover.
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For if x ∈ E, since x is rational, x 6= c. If x > c then x ∈ U0. If x < c, by the Archimidean property, there is
an i ∈ N so that 1/i < c − x. It follows that c − 1/i > x so x ∈ Ui. On the other hand no finite collection
will cover. Indeed, if we choose any finite cover it would have to include U0 to cover 1 ∈ E and therefore take
the form {U0, Ui1 , . . . , UiJ

} for a finite set of numbers i1, . . . , iJ ∈ N. Hence if K = max{i1, . . . , iJ} then
U0 ∪ Ui1 ∪ . . . ∪ UiJ

= (−∞, c− 1/K) ∪ (c,∞). But in the gap [c− 1/K, c] there are rational numbers, by the
density of rationals. Thus E 6⊆ U0 ∪ Ui1 ∪ . . . ∪ UiJ

. (Of course the easy argument is to observe that E is not
closed so can’t be compact.)
(9.) Theorem. Suppose E ⊆ Rn is bounded and f : E → Rm is uniformly continuous. Then f(E) is bounded.
This would not be true if “uniformly continuous” were replaced by “continuous.”

Proof. One idea is to divide E into finitely many little pieces so that f doesn’t vary very much on any one
of them. Then the bound on f is basically the max of bounds at one point for each little piece. f is uniformly
continuous if for every ε > 0 there is a δ > 0 so that if x, y ∈ E such that ‖x− y‖ < δ then ‖f(x)− f(y)‖ < ε.
Fix an ε0 > 0 and let uniform continuity give δ0 > 0. Since E is bounded, there is an R < ∞ so that
E ⊆ BR(0). Finitely many δ0/2 balls are required to cover BR(0), that is, there are points xi ∈ Rn so that
BR(0) ⊆ ∪J

i=1Bδ0/2(xi). This can be accomplished by chopping the ball into small enough cubes and taking
xi’s as the centers of the cubes. e.g., the cube [−δ0/4

√
n, δ0/4

√
n] × · · · × [−δ0/4

√
n, δ0/4

√
n] ⊆ Bδ0/2(0).

Choose points of E in those balls that meet E. Let I = {i ∈ {1, . . . , J} : Bδ0/2(xi) ∩ E 6= ∅} and choose
yi ∈ Bδ0/2(xi) ∩ E if i ∈ I. Let M = max{‖f(yi)‖ : i ∈ I} be the largest norm among the points yi

in E. Then the claim is that f(E) ⊆ BM+ε0(0). To see this, choose z ∈ E. Since E is in the union
of little balls, there is an index j ∈ I so that z ∈ Bδ0/2(xj). Since yj ∈ Bδ0/2(xj) also, it follows that
‖z − yj‖ = ‖z − xj + xj − yj‖ ≤ ‖z − xj‖ + ‖xj − yj‖ < δ0/2 + δ0/2 = δ0. By the uniform continuity,
‖f(yj) − f(z)‖ < ε0. It follows that ‖f(z)‖ = ‖f(z) − f(yj) + f(yj)‖ ≤ ‖f(z) − f(yj)‖ + ‖f(yj)‖ < ε0 + M
and we are done.

The result doesn’t hold if f is not uniformly continuous. Let E = B1(0)\{0} and f the function from problem
(4.). By (4a.) f is continuous on E but f(E) = (1,∞) is unbounded.
(10.) Theorem. Let S = [0, 1]× [0, 1] ⊆ R2 and F : S → R be continuous. Then F is not one to one.

Proof. Consider the circle σ(t) = ( 1
2 + 1

2 sin t, 1
2 + 1

2 cos t) ∈ S as t ∈ [0, 2π]. Then f(t) = F (σ(t)) is a
periodic continuous function. If f is constant then F (σ(0)) = F (σ(π)) so F is not 1−1. Since [0, 2π] is compact,
there are points θ0, θ1 ∈ [0, 2π] where f(θ0) = inf{f(t) : t ∈ [0, 2π]} and f(θ1) = sup{f(t) : t ∈ [0, 2π]}. Also
f(θ0) < f(θ1). For convenience, suppose θ0 < θ1. The point is that the curves σ((θ0, θ1)) and σ((θ1, θ0 + 2π))
are two opposite arcs of the circle running from the minimum of f on the circle to the maximum. And any
intermediate value gets taken on at least once in each arc, thus there are two point where f is equal and F is
therefore not 1− 1. More precisely, choose any number f(θ0) < y < f(θ1). By the intermediate value theorem
applied to f : [θ0, θ1] → R, there is θ3 ∈ (θ0, θ1) so that f(θ3) = y. Also by the intermediate value theorem
applied to f : [θ1, θ0 + 2π] → R, there is θ4 ∈ (θ1, θ0 + 2π) so that f(θ4) = y. Since σ(θ3) 6= σ(θ4) because
0 = θ1 − θ1 < θ4 − θ3 < θ1 + 2π− θ1 = 2π, it follows that F is not 1− 1 since F (σ(θ3)) = F (σ(θ4)). The case
θ0 > θ1 is similar.
(11a.) Let f : R2 → R. Suppose that both iterated limits exist and are equal. The the limit exists.

L = lim
x→0

lim
y→0

f(x, y) = lim
y→0

lim
x→0

f(x, y) =⇒ L = lim
(x,y)→(0,0)

f(x, y)

FALSE! Consider

f(x, y) =

{
xy2

x2+y4 , if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

For x 6= 0 fixed, the function f(x, y) → 0 as y → 0. Thus limx→0 limy→0 f(x, y) = limx→0 0 = 0. For y 6= 0
fixed, the function f(x, y) → 0 as x → 0. Thus limy→0 limx→0 f(x, y) = limy→0 0 = 0. Compare to the two
dimensional limit. For (x, y) = (0, t), f(0, t) = 0 so that along this path, f(0, t) → 0 as t → 0. Now consider
(x, y) = (t2, t) for t > 0. Now f(t2, t) = 1

2 so that along this path, f(t2, t) → 1
2 as t → 0. Being inconsistent

along path limits, there is no limit for the function.
(b.) Suppose f : R3 → R2 is given by f(x, y, z) = (xy + x2z3, x4 + y + y5z6). Then f is differentiable on

R3.
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TRUE! The partial derivatives are

∂f

∂x

 x
y
z

 =
(

y + 2xz3

4x3

)
,

∂f

∂y

 x
y
z

 =
(

x
1 + 5y4z6

)
,

∂f

∂z

 x
y
z

 =
(

3x2z2

6y5z5

)

Since f is a polynomial function, its first partial derivatives exist at all points and polynomial functions. But by
Theorem 11.5, since the partial derivatives are continuous at all points, the function is differentiable at all points.


