

1. Using just the definition of convergence in \mathbb{R}^2 , show that the limit exists: $\lim_{n\to\infty} \left(\frac{\sin n}{\sqrt{n}}, \frac{1}{2^n} \right)$.

Proof. First, observe that each component converges to zero so set $\mathbf{x} = (0,0)$. Using $\sin^2 n \le 1$ and $2^{2n} \ge n$ for all $n \in \mathbb{N}$ we get

$$
\|\mathbf{x}_n - \mathbf{x}\| = \left(\frac{\sin^2 n}{n} + \frac{1}{2^{2n}}\right)^{\frac{1}{2}} \le \left(\frac{1}{n} + \frac{1}{n}\right)^{\frac{1}{2}} = \sqrt{\frac{2}{n}}.
$$
 (1)

To see that $\mathbf{x}_n \to \mathbf{x}$ as $n \to \infty$, choose $\varepsilon > 0$. Let $N = \frac{2}{\varepsilon^2}$. For any $n > N$, by (1), $\|\mathbf{x}_n - \mathbf{x}\| \leq \sqrt{\frac{2}{n}} < \sqrt{\frac{2}{N}} = \varepsilon$ thus convergence is proved. \Box

2. Let $\{x_k\}$ and $\{y_k\}$ be sequences in \mathbb{R}^n and x and y be points in \mathbb{R}^n . Suppose $x_k \to x$, and $\mathbf{y}_k \to \mathbf{y} \text{ as } k \to \infty. \text{ Show } ||\mathbf{x}_k|| \mathbf{y}_k \to ||\mathbf{x}|| \mathbf{y} \text{ as } k \to \infty.$

Proof. The first argument uses the Computation Theorem from the chapter: Since $\mathbf{x}_k \to \mathbf{x}$ as $k \to \infty$ in \mathbb{R}^n , then the norm $\|\mathbf{x}_k\| \to \|\mathbf{x}\|$ as $k \to \infty$. Also, whenever there is a sequence of constants $c_k \to c$ and vectors in $y_k \to y$ as $k \to \infty$ in \mathbb{R}^n then $c_k y_k \to c y$ as $k \to \infty$. Hence, taking $c_k = ||\mathbf{x}_k||$ yields the result. \Box

Many arguments are acceptable. The other extreme is just to use the definition.

Proof. First, the convergence $\mathbf{x}_k \to \mathbf{x}$ as $k \to \infty$ implies that $\|\mathbf{x}_k\|$ is bounded. Choose $\varepsilon = 1$. There is N_1 so that if $k > N_1$ then $\|\mathbf{x}_k - \mathbf{x}\| < 1$. For these k,

$$
\|\mathbf{x}_k\| = \|\mathbf{x}_k - \mathbf{x} + \mathbf{x}\| \le \|\mathbf{x}_k - \mathbf{x}\| + \|\mathbf{x}\| < 1 + \|\mathbf{x}\|.
$$

Adding and subtracting the intermediate term as for product problems and using boundedness and the reverse triangle inequality,

$$
\begin{aligned}\n\|\|\mathbf{x}_{k}\| \mathbf{y}_{k} - \|\mathbf{x}\| \mathbf{y}\| &= \|\|\mathbf{x}_{k}\| \mathbf{y}_{k} - \|\mathbf{x}_{k}\| \mathbf{y} + \|\mathbf{x}_{k}\| \mathbf{y} - \|\mathbf{x}\| \mathbf{y}\| \\
&= \|\|\mathbf{x}_{k}\| \left(\mathbf{y}_{k} - \mathbf{y} \right) + \left(\|\mathbf{x}_{k}\| - \|\mathbf{x}\| \right) \mathbf{y} \| \\
&\leq \|\|\mathbf{x}_{k}\| \left(\mathbf{y}_{k} - \mathbf{y} \right)\| + \|(\|\mathbf{x}_{k}\| - \|\mathbf{x}\|) \mathbf{y}\| \\
&= \|\mathbf{x}_{k}\| \|\mathbf{y}_{k} - \mathbf{y}\| + \|\|\mathbf{x}_{k}\| - \|\mathbf{x}\|\|\|\mathbf{y}\| \\
&\leq (1 + \|\mathbf{x}\|) \|\mathbf{y}_{k} - \mathbf{y}\| + \|\mathbf{x}_{k} - \mathbf{x}\|\|\mathbf{y}\|.\n\end{aligned}
$$

Using the convergence $\mathbf{x}_k \to \mathbf{x}$ and $\mathbf{y}_k \to \mathbf{y}$ as $k \to \infty$ for any $\varepsilon > 0$ there is an N_2 so that if $k > N_2, ||\mathbf{x}_k - \mathbf{x}|| < \frac{\varepsilon}{1+||\mathbf{x}||+||\mathbf{y}||}$. Also there is an N_3 so that if $k > N_2, ||\mathbf{y}_k - \mathbf{y}|| < \frac{\varepsilon}{1+||\mathbf{x}||+||\mathbf{y}||}$. Put $N = \max\{N_1, N_2, N_3\}$. Now for any $k > N$,

$$
\|\|\mathbf{x}_k\|\,\mathbf{y}_k-\|\mathbf{x}\|\,\mathbf{y}\|<\frac{\left(1+\|\mathbf{x}\|\right)\varepsilon}{1+\|\mathbf{x}\|+\|\mathbf{y}\|}+\frac{\|\mathbf{y}\|\varepsilon}{1+\|\mathbf{x}\|+\|\mathbf{y}\|}=\varepsilon.\quad \Box
$$

3. State the definition: (X, δ) is a metric space. Let $\|\mathbf{u}-\mathbf{v}\|$ be the metric for \mathbf{R}^n as usual. Show that $\hat{\delta}$ is another metric, where $\hat{\delta}(\mathbf{u}, \mathbf{v}) = \frac{\|\mathbf{u} - \mathbf{v}\|}{1 + \|\mathbf{u} - \mathbf{v}\|}$.

A metric space is a set X and a function $\ddot{\delta}: X \times X \to \mathbf{R}$ such that for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$ all three conditions hold:

- a. $\delta(\mathbf{x}, \mathbf{y}) = \delta(\mathbf{y}, \mathbf{x})$
- b. $\delta(\mathbf{x}, \mathbf{y}) \ge 0$ and $\delta(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$.

c. $\delta(\mathbf{x}, \mathbf{z}) \leq \delta(\mathbf{x}, \mathbf{y}) + \delta(\mathbf{y}, \mathbf{z}).$

Proof. We check that all three properties hold for $\hat{\delta}$. The first condition follows from $\|\mathbf{x} - \mathbf{y}\|$ = $||y - x||$: $\hat{\delta}(x, y) = \frac{||x - y||}{1 + ||x - y||} = \frac{||y - x||}{1 + ||y - x||} = \hat{\delta}(y - x)$.

The function $f(s) = \frac{s}{1+s}$ is stictly increasing on $0 \leq s < \infty$. The second condition follows for $s \geq 0$ from $f(s) \geq 0$ and $f(s) = 0$ if and only if $s = 0$, and properties of $||\mathbf{x} - \mathbf{y}||$. Let $s = ||\mathbf{x} - \mathbf{y}|| \ge 0$ by positivity of norm. Then $\hat{\delta}(\mathbf{x}, \mathbf{y}) = f(s) \ge 0$ and if $0 = \hat{\delta}(\mathbf{x}, \mathbf{y}) = f(s)$ then $s = ||\mathbf{x} - \mathbf{y}|| = 0$ which implies $\mathbf{x} = \mathbf{y}$ by positive definiteness.

By the usual triangle inequality, $\|\mathbf{x} - \mathbf{z}\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\|$ so by monotonicity of f, $\hat{\delta}(\mathbf{x}, \mathbf{z}) = f(||\mathbf{x} - \mathbf{z}||) \leq f(||\mathbf{x} - \mathbf{y}|| + ||\mathbf{y} - \mathbf{z}||).$ Hence

$$
\hat{\delta}(\mathbf{x}, \mathbf{z}) \le \frac{\|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\|}{1 + \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\|} = \frac{\|\mathbf{x} - \mathbf{y}\|}{1 + \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\|} + \frac{\|\mathbf{y} - \mathbf{z}\|}{1 + \|\mathbf{v} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\|}
$$
\n
$$
\le \frac{\|\mathbf{x} - \mathbf{y}\|}{1 + \|\mathbf{x} - \mathbf{y}\|} + \frac{\|\mathbf{y} - \mathbf{z}\|}{1 + \|\mathbf{y} - \mathbf{z}\|} = \hat{\delta}(\mathbf{x}, \mathbf{y}) + \hat{\delta}(\mathbf{y}, \mathbf{z}). \qquad \Box
$$

4. Let $\{x_k\}$ be a sequence in \mathbb{R}^n and $M < \infty$, $r < 1$ be constants such that the norm $||\mathbf{x}_k|| \leq Mr^k$ for all k. Show that the infinite sum $\sum_{k=1}^{\infty} \mathbf{x}_k$ converges.

Proof. The infinte sum converges provided that the sequence of partial sums converge. Let $S_n = \sum_{k=1}^n x_k$. In \mathbb{R}^n , since a Cauchy sequence is convergent, it suffices to show that $\{S_n\}$ is a Cauchy sequence. Choose $\varepsilon > 0$. Let $N = \log(\varepsilon(1 - r)/M)/\log r$. Suppose that both $n, m > N$. If $n = m$ then $||\mathbf{S}_n - \mathbf{S}_m|| = 0 < \varepsilon$. Hence, after swapping if necessary, we may suppose $n > m$. Thus, using the triangle inequality with many terms, the hypothesis and the formula for a geometric sum,

$$
\|\mathbf{S}_n - \mathbf{S}_m\| = \|\sum_{k=1}^n \mathbf{x}_k - \sum_{k=1}^m \mathbf{x}_k\| = \|\sum_{k=m+1}^n \mathbf{x}_k\| \le \sum_{k=m+1}^n \|\mathbf{x}_k\|
$$

$$
\le \sum_{k=m+1}^n Mr^k = \frac{Mr^{m+1}(1-r^{n-m})}{1-r} < \frac{Mr^{m+1}}{1-r} < \frac{Mr^N}{1-r} = \varepsilon.
$$

5. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample. For these problems, \mathbb{R}^2 is endowed with the usual real vector space structure.

a. The function $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 - u_2 v_2$ provides another inner-product for \mathbf{R}^2 .

FALSE. The function $\tilde{\bullet}$ is not positive definite. For $\mathbf{u} = (1, 3)$ we get $\mathbf{u} \tilde{\bullet} \mathbf{u} = 1 \cdot 1 - 3 \cdot 3 = -8$ which should be positive for an inner-poduct.

b. The function $||\mathbf{u}|| = |u_1| + 2|u_2|$ provides another norm for \mathbf{R}^2 .

TRUE. The function satisfies the three conditions:

It is positively multiplicative: for all $\mathbf{u} \in \mathbb{R}^2$ and $\alpha \in \mathbb{R}$, $\|\alpha\mathbf{u}\| = |\alpha u_1| + 2|\alpha u_2| = |\alpha|(|u_1| + 2|u_2|) = |\alpha|\|\mathbf{u}\|.$

It is positive definite: for all $\mathbf{u} \in \mathbb{R}^2$, $\|\mathbf{u}\| = |u_1| + 2|u_2| \ge 0$ and $\|\mathbf{u}\| = 0$ if and only if $|u_1| + 2|u_2| = 0$ if and only if $|u_1| = 0$ and $|u_2| = 0$ if and only if $\mathbf{u} = (u_1, u_2) = (0, 0)$.

It satisfies the triangle inequality: for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$, $\|\mathbf{u} + \mathbf{v}\| = |u_1 + v_1| + 2|u_2 + v_2| \leq$ $|u_1| + |v_1| + 2|u_2| + 2|v_2| = (|u_1| + 2|u_2|) + (|v_1| + 2|v_2|) = ||\mathbf{u}|| + ||\mathbf{v}||$

c. The function $\tilde{\delta}(\mathbf{u}, \mathbf{v}) = |u_1 - v_1| + |u_2 - v_2|^2$ provides another metric for \mathbb{R}^2 .

FALSE. The triangle inequality fails. For example if $\mathbf{u} = (1, 1)$, $\mathbf{v} = (3, 7)$ and $\mathbf{w} = (2, 4)$ then $\delta(\mathbf{u}, \mathbf{v}) = 2 + 36 = 38$, $\delta(\mathbf{u}, \mathbf{w}) = 1 + 9 = 10$ and $\delta(\mathbf{w}, \mathbf{v}) = 1 + 9 = 10$ and so $38 = \tilde{\delta}(\mathbf{u}, \mathbf{v}) \not\leq \tilde{\delta}(\mathbf{u}, \mathbf{w}) + \tilde{\delta}(\mathbf{w}, \mathbf{v}) = 20.$