Math 3220 § 1.	Third Midterm Exam	Name: Solutions
Treibergs $a t$		November 7, 2007

(1a.) Define: $f : \mathbf{R}^p \to \mathbf{R}^q$ is differentiable at $\mathbf{a} \in \mathbf{R}^p$.

f is differentiable at **a** is there is a $q \times p$ matrix M such that $\lim_{\mathbf{h}\to 0} \frac{f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-M\mathbf{h}}{\|\mathbf{h}\|} = 0.$

(1b.) Determine whether $f(x,y) = \begin{cases} \frac{y^5}{x^4 + y^4}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$ is differentiable at (0,0).

f is not differentiable at (0,0). If the function were differentiable, then the differential $df((0,0)) = \left(\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial x}(0,0)\right)$ where $\frac{\partial f}{\partial x}(0,0) = \lim_{t\to 0} \frac{f(0+t,0)-f(0,0)}{t} = \lim_{t\to 0} \frac{0-0}{t} = 0$ and $\frac{\partial f}{\partial y}(0,0) = \lim_{t\to 0} \frac{f(0,0+t)-f(0,0)}{t} = \lim_{t\to 0} \frac{t^5/t^4-0}{t} = 1$. To see that the affine function does not well-approximate, condider the defining limit

$$\lim_{(h,k)\to(0,0)} \frac{f(0+h,0+k) - f(0,0) - df((0,0))\binom{h}{k}}{\|(h,k)\|} = \lim_{(h,k)\to(0,0)} \frac{\frac{k^5}{h^4 + k^4} - 0 - (0,1)\binom{h}{k}}{\sqrt{h^2 + k^2}}$$
$$= \lim_{(h,k)\to(0,0)} \frac{k^5 - k(h^4 + k^4)}{(h^4 + k^4)\sqrt{h^2 + k^2}} = \lim_{(h,k)\to(0,0)} \frac{-h^4k}{(h^4 + k^4)\sqrt{h^2 + k^2}}.$$

This limit does not exist so the affine function does not well approximate and the differential does not exist. To see this, consider the approach (h, k) = (t, 0) as $t \to 0$. For this path, the limit is 0. On the other hand, for (h, k) = (t, t) the limit is $-1/(2\sqrt{2})$. Since these are inconsistent, the two-dimensional limit does not exist.

(2) Let $F : \mathbf{R}^4 \to \mathbf{R}^2$ be given by $F(x, y, z, w) = (f_1(x, y, z, w), f_2(x, y, z, w))$ where $f_1(x, y, z, w) = x + yz$ and $f_2(x, y, z, w) = x + y + z + w$. Suppose there is an open set $U \subseteq \mathbf{R}^2$ with $\mathbf{a} = (1, 2) \in U$ and a continuously differentiable function $G : U \to \mathbf{R}^2$ with $G(u, v) = (g_1(u, v), g_2(u, v))$ and $G(\mathbf{a}) = (3, 4)$ such that $f(u, v, g_1(u, v), g_2(u, v)) = (7, 10)$ for all $(u, v) \in U$. Find $dG(\mathbf{a})$.

All functions are polynomials, thus the Chain Rule applies. Let $\mathcal{G}(u, v) = (u, v, g_1(u, v), g_2(u, v))$ so $\mathcal{G}(1, 2) = (1, 2, 3, 4)$. Then differentiate $F \circ \mathcal{G}(u, v) = (7, 10)$ using the Chain Rule. One gets $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = dF(\mathcal{G}(1, 2)) \circ d\mathcal{G}(1, 2)$. Thus

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} & \frac{\partial f_1}{\partial w} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} & \frac{\partial f_2}{\partial w} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\partial g_1}{\partial u} & \frac{\partial g_1}{\partial v} \\ \frac{\partial g_2}{\partial u} & \frac{\partial g_2}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{\partial g_1}{\partial u} & \frac{\partial g_1}{\partial v} \\ \frac{\partial g_2}{\partial u} & \frac{\partial g_2}{\partial v} \end{pmatrix}$$

Rewriting and solving, we get at (u, v) = (1, 2) and (x, y, z, w) = (1, 2, 3, 4),

$$\begin{pmatrix} \frac{\partial g_1}{\partial u} & \frac{\partial g_1}{\partial v} \\ \frac{\partial g_2}{\partial u} & \frac{\partial g_2}{\partial v} \end{pmatrix} = - \begin{pmatrix} \frac{\partial f_1}{\partial z} & \frac{\partial f_1}{\partial w} \\ \frac{\partial f_2}{\partial z} & \frac{\partial f_2}{\partial w} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} = - \begin{pmatrix} y & 0 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z \end{pmatrix}^{-1} \begin{pmatrix} 1 & z \\ 1 & z$$

(3.) Let $f : \mathbf{R}^p \to \mathbf{R}^q$ be such that f(0) = 0. Suppose that f and its first partial derivatives exist and are differentiable at all points. Suppose also that the second differential $d^2 f(\mathbf{x})(\mathbf{h})^2 = 0$ for all $\mathbf{h}, \mathbf{x} \in \mathbf{R}^p$. Show that f is a linear function. Since the function and its partial derivatives up to first order exist and are differentiable at all points in \mathbf{R}^p , we may use the Taylor's approximation up to first order. For all $\mathbf{h} \in \mathbf{R}^p$ there is an interior point in the line segment $\mathbf{c} \in [0, \mathbf{h}]$ such that

$$f(0 + \mathbf{h}) = f(0) + df(0)(\mathbf{h}) + \frac{1}{2}d^2f(\mathbf{c})(\mathbf{h})^2 = 0 + df(0)(\mathbf{h}) + 0 = M\mathbf{h},$$

where we have used f(0) = 0, $d^2 f(\mathbf{c}) = 0$ and let the $q \times p$ matrix M = df(0). Thus, $f(\mathbf{h}) = M\mathbf{h}$ for all \mathbf{h} which is a linear function.

(4.) Let $U = \{(x_1, x_2, \dots, x_p) \in \mathbf{R}^p : x_1 > 0, x_2 > 0, \dots, x_p > 0\}$. Find the maximum of $\phi(x_1, \dots, x_p) = \prod_{i=1}^p x_i$ on the set of points $(x_1, x_2, \dots, x_p) \in U$ that satisfy $f(x_1, \dots, x_p) = \sum_{i=1}^p x_i = 1$.

The functions are polynomial so everywhere C^1 . Since the logarithm is increasing, we may as well look for the maximum of $\ln \phi(x_1, \ldots, x_p) = \sum_{i=1}^p \ln(x_i)$ instead. The extreme points of the constrained problem satisfy the Lagrange Multipliers equation and $f(x_1, \ldots, x_p) = 1$. There is $\lambda \in \mathbf{R}$ so that

$$\nabla \ln \phi(x_1, \dots, x_p) = \lambda \nabla f(x_1, \dots, x_p) \implies \left(\frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_p}\right) = \lambda(1, 1, \dots, 1).$$

In other words $x_1 = \frac{1}{\lambda}$ for all *i*. Putting this into the constraint, $1 = \sum_{i=1}^{p} x_i = \sum_{i=1}^{p} \frac{1}{\lambda} = \frac{p}{\lambda}$ so $\lambda = \frac{1}{p}$ at the critical point and there $\phi(x_1, \ldots, x_p) = \left(\frac{1}{p}\right)^p$. Observe that $0 < x_i = 1 - \sum_{j \neq i} x_j < 1$ so $S = \{\mathbf{x} \in U : f(\mathbf{x}) = 1\}$ is bounded. As ϕ is uniformly continuous, $\phi(S)$ is bounded also. $x_i > 0$ implies $\phi(S) \subseteq (0, \infty)$. As $x_i \to 0$ so $\phi \to 0$. Thus $\phi(S) = (0, b]$ since S is connected. Also b is a max of ϕ , which is taken at an inner point of S so must be the critical point we found because there was only one critical point. Hence the critical point is a maximum. Note that from this problem one can deduce the Arithmetic-Geometric Mean Inequality: $(\prod_{i=1}^{p} |x_i|)^{\frac{1}{p}} \leq \frac{1}{p} \sum_{i=1}^{p} |x_i|$. (5A.) Statement. Suppose $f : \mathbf{R}^p \to \mathbf{R}$ is differentiable at $\mathbf{a} \in \mathbf{R}^p$. Then the partial derivatives $\frac{\partial f}{\partial x_i}$ exists at \mathbf{a} .

TRUE. By specializing to the limit $\mathbf{h} = (0, 0, \dots, 0, h_i, 0, \dots, 0)$, the limit (1a.) says $\frac{\partial f}{\partial x_i}(\mathbf{a}) = m_{1,i}$, so that the partial derivative is the corresponding entry in the Jacobian matrix $M = df(\mathbf{a})$. This follows from

$$\lim_{hi\to 0} \frac{f(a_1,\ldots,a_{i-1}a_i+h_i,a_{i+1},\ldots,a_p) - f(a_1,\ldots,a_p) - m_{1,i}h_i}{h_i} \cdot \frac{h_i}{\|\mathbf{h}\|} = 0$$

(5b.) Statement. Suppose $f : \mathbf{R}^p \to \mathbf{R}$ is twice continuously differentiable. Suppose f has a local minimum at $\mathbf{a} \in \mathbf{R}^p$. Then $d^2 f(\mathbf{a})$ is positive definite.

FALSE. $f(x, y) = x^4 + y^4$ has a global minimum at (0, 0) because $x^4 \ge 0$ and $y^4 \ge 0$ but the Hessian matrix is dead zero at the minimum (x, y) = (0, 0)

$$d^{2}f((x,y)) = \begin{pmatrix} \frac{\partial^{2}f}{\partial x^{2}} & \frac{\partial^{2}f}{\partial x \partial y} \\ \frac{\partial^{2}f}{\partial y \partial x} & \frac{\partial^{2}f}{\partial y^{2}} \end{pmatrix} = \begin{pmatrix} 12x^{2} & 0 \\ 0 & 12y^{2} \end{pmatrix} \implies d^{2}f((0,0)) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

which is not positive definite because for any $\mathbf{h} \neq 0$, $4d^2f((0,0))(\mathbf{h})^2 = 0$ and not positive as it should be for a positive definite matrix.

(5c.) Statement. Let $f(x,y) = \frac{xy}{x-y}$. Then there is $c \in (1,6)$ such that $f(6,4) = f(1,4) + df(c,4) {5 \choose 0}$.

FALSE. The conditions for the mean value theorem fail at the point $(4,4) \in [(1,4), (6,4)]$ in the line segment. At that point f blows up. You can see it another way. $\frac{\partial f}{\partial x} = -\frac{y^2}{(x-y)^2}$ which is negative. However, if there were c, then

 $0 < 12 - \left(-\frac{4}{3}\right) = f(6,4) - f(1,4) = df(c,4) {5 \choose 0} = 5 \frac{\partial f}{\partial x}(c,4) + 0 \cdot \frac{\partial f}{\partial y}(c,4) = -\frac{80}{(c-4)^2} < 0$ which is a contradiction.