
Math 3220 § 1.
Treibergs −−σιι

Final Exam Name: Soliutions
April 26, 2013

Questions are from Final Exam of December 11, 2007.
(1.) Determine whether the function f : R2 → R is differentiable at (0, 0), where

f(x, y) =


xy5

x4 + y4
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

Since f(x, 0) = 0 and f(0, y) = 0, we have partial derivatives fx(0, 0) = 0 and fy(0, 0) = 0 so
that if f were differentiable at zero, its differential would be df(0, 0)(h, k) = 0. We check that the
difference quotient vanishes at (0, 0). For (h, k) 6= (0, 0),

|f(h, k)− f(0, 0)− df(0, 0)(h, k)|
‖(h, k)‖

=

∣∣∣∣ hk5

h4 + k4
− 0− 0

∣∣∣∣
√
h2 + k2

=
|hk5|

(h4 + k4)
√
h2 + k2

≤
(
h2 + k2

) (
h4 + k4

)
2 (h4 + k4)

√
h2 + k2

≤
√
h2 + k2 = ‖(h, k)‖

which tends to zero as (k, h) → (0, 0). Thus f is differentiable at (0, 0). We used |hk| ≤
1
2

(
h2 + k2

)
and k4 ≤ h4 + k4.

(2.) Let K ⊆ Rn be a compact subset. Suppose xk ∈ K, k = 1, 2, 3, . . . is a sequence of points in
K. Show that there is a subsequence xkj that converges in K as j →∞.

Since K is compact, it is bounded. Since {xk} ⊆ K ⊆ Rn, it is a bounded sequence. By
the Bolzano Weirstrass Theorem, every bounded sequence in Euclidean space has a convergent
subsequence. Hence there are kj →∞ such that xkj

→ x as j →∞ for some x ∈ Rn. But since
K is compact, it is also closed. But every closed set contains its limit points, thus x ∈ K.

(3.) Show that there is a neighborhood U ⊆ R3 of the point (1, 2, 3) and a C1 function G : U → R2

such that G(1, 2, 3) = (4, 5) and f(x, G(x)) = (27, 17) for all x ∈ U where f : R5 → R2 is given
by f = (f1, f2) with

f1(x, y, z, u, v) = x+ yz + uv,

f2(x, y, z, u, v) = xu+ yv + z.

Find dG(1, 2, 3).
We use the Implicit Function Theorem to solve for w = (u, v) in terms of x = (x, y, z) near

(1, 2, 3, 4, 5). We check the assumptions. First, f is polynomial, hence C1. Second the differential
dw(1, 2, 3, 4, 5) is given by the 2× 2 matrix∂f1

∂u
∂f1
∂v

∂f2
∂u

∂f2
∂v


∣∣∣∣∣∣∣∣
(x,w)=(1,2,3,4,5)

=

v u

x y


∣∣∣∣∣∣∣∣
(x,w)=(1,2,3,4,5)

=

5 4

1 2


whose determinant is 6 so dw(1, 2, 3, 4, 5) is invertible. Hence the IFT applies: there is an open
neighborhood V ⊆ R5 of (1, 2, 3, 4, 5), an open neighborhood U ⊆ R3 of (1, 2, 3) and a function
G ∈ C1(U,R2) such that G(1, 2, 3) = (4, 5), f(x, G(x)) = (27, 17) for all x ∈ U and if (x,w) ∈ V
such that f(x, z) = (27, 17) then x ∈ U and w = G(x).
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By differentiating f(x, G(x)) = (27, 17) we see that dxf + dwf ◦ dxG = 0 so that

dxG(1, 2, 3) = − [dwf(1, 2, 3, 4, 5)]−1 ◦ dxf(1, 2, 3, 4, 5)

= −


∂f1

∂u
∂f1
∂v

∂f2
∂u

∂f2
∂v


∣∣∣∣∣∣∣∣
(x,w)=(1,2,3,4,5)


−1 ∂f1

∂x
∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z


∣∣∣∣∣∣∣∣
(x,w)=(1,2,3,4,5)

= −


v u

x y


∣∣∣∣∣∣∣∣
(x,w)=(1,2,3,4,5)


−1 1 z y

u v 1


∣∣∣∣∣∣∣∣
(x,w)=(1,2,3,4,5)

= −

5 4

1 2


−11 3 2

4 5 1

 =

− 1
3

2
3

1
6 − 5

6


1 3 2

4 5 1

 =

 7
3

7
3 0

− 19
6 − 11

3 − 1
2

 .

(4.) Let f, fn : R2 → R be functions for n ∈ N. Suppose that for all x ∈ R2, lim
n→∞

fn(x) = f(x).
Determine whether the statement is true or false. If true give a brief reason. If false, give a
counterexample.

(a.) Statement. For every sequence xk ∈ R2, k = 1, 2, 3, . . . which converges xk → x we have
lim
k→∞

fk(xk) = f(x).

FALSE. For example, let fn(x) =
1

1 + n2‖x‖2
which tends to f(x) = 0 if x 6= 0 and f(0) = 1.

Take xn = ( 1
n , 0). Then f(xn) = 1

2 which does not tend to f(0) = 1. The statement would have
been true if the convergence had been uniform.

(b.) Statement. Suppose all fk(x) ∈ C1(R2). Then f is continuous.
FALSE. The example in (a.) has fn ∈ C1(R2) since it is the quotient of smooth nonzero

functions, but the limit f is not continuous at zero. The statement would have been true if the
convergence had been uniform.

(c.) Statement. Let R ⊆ R2 be an aligned rectangle.

Then
∫
R

f(x) dV (x) = lim
n→∞

∫
R

fn(x) dV (x).

FALSE. Let R = [0, 1]2, f(x, y) = 0 and

fn(x, y) =


n2x, if 0 ≤ x ≤ 1

2n ;
n− n2x, if 1

2n < x ≤ 1
n ;

0, otherwise.

Then fn → f ,
∫
R
f(x) dV (x) = 0 but

∫
R
fn(x) dV (x) = 1

4 . The statement would have been true
if the convergence had been uniform.

2



(5.) Let T = {(x, y) ∈ R2 : −3 ≤ x ≤ 3, |x| ≤ y ≤ 3}. Consider I =
∫
T

e−y
2
dV (x, y). Why

does the integral I exist? Why can the integral I be reduced to an iterated integral? Evaluate the
integral I.

Since the region T is a triangle in the plane, it is a Jordan region because it is bounded by
line segments which have content zero so V (∂T ) = 0. Also the function f(x, y) = exp(−y2) is
continuous over the whole plane, thus on T . Since we have a continuous function on a Jordan
region, by the existence theorem over Jordan regions, f is integrable on T .

T = {(x, y) : 0 ≤ y ≤ 3 and ψ(y) ≤ x ≤ φ(y) } is a compact Jordan region in the plane de-
termined by the continuous upper and lower functions ψ(y) ≤ x ≤ ϕ(y) defined on the Jordan
region B = [0, 3], where ψ(y) = −y and ϕ(y) = y. Since f is continuous in the plane, f(x, y) is
integrable on T and integrable with respect to x on the interval [ψ(y), ϕ(y)] for every y ∈ [0, 3]. It
follows by theorem on iterated integrals over non-rectangular regions determined by an upper and
lower function (which follows from Fubini’s Theorem) that the integral over T may be written as
an iterated integral which reduces the problem to a simple substitution.∫

T

f(x, y) dV (x, y) =
∫
B

∫ ϕ(y)

ψ(y)

f(t, y) dt dV (y)

=
∫ 3

0

∫ y

−y
exp(−y2) dt dy

=
∫ 3

0

2y exp(−y2) dy

= 1− e−9.

(6.) Let D ⊆ R2 be the region in the first quadrant bounded by the curves y = x, y2 − x2 = 1,
x2+y2 = 4, and x2+y2 = 9. Find an open set U ⊆ R2 and a change of variables ϕ : U → R2 such
that D = ϕ(R), where R = [0, 1]× [4, 9], and such that ϕ is C1, one-to-one and det(dϕ(x, y)) 6= 0
on U . Then find the integral ∫

D

xy

x2 + y2
dV (x, y).

The first two constraints are equivalent to y2 − x2 = 0 and y2 − x2 = 1. Thus we may take

s = y2 − x2,

t = y2 + x2.

Solving for (x, y) in terms of (s, t) we findx
y

 = ϕ

s
t

 =


√
t− s

2√
t+ s

2


where we take the positive square roots. ϕ ∈ C1(U,R2) is a one-to-one function if we take the
open set U = {(s, t) ∈ R2 : t− s > 0 and t+ s > 0}. Note that ϕ(U) is the open first quadrant.
Note also that D = ϕ(R) and the rectangle R ⊆ U . Since f(x, y) = xy

x2+y2 is continuous away
from (0, 0) and ϕ is C1 on R, it follows that f is integrable on ϕ(R) and f(ϕ(s, t)) |det(dϕ(s, t))|
is integrable on R. The differential is

dϕ(s, t) =


∂x

∂s

∂x

∂t
∂y

∂s

∂y

∂t

 =


−1

4

(
t− s

2

)− 1
2 1

4

(
t− s

2

)− 1
2

1
4

(
t+ s

2

)− 1
2 1

4

(
t+ s

2

)− 1
2
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so that

det(dϕ(s, t)) = −1
8

(
t− s

2

)− 1
2
(
t+ s

2

)− 1
2

,

which is nonzero for all (s, t) ∈ U . Thus the change of variables formula applies to D ⊆ U .∫
D

xy

x2 + y2
dV (x, y) =

∫
ϕ([0,1]×[4,9])

f(x, y) dV (x, y)

=
∫

[0,1]×[4,9]

f(ϕ(s, t)) |det(dϕ(s, t))| dV (s, t)

=
∫

[0,1]×[4,9])

1
t

(
t− s

2

) 1
2
(
t+ s

2

) 1
2 1

8

(
t− s

2

)− 1
2
(
t+ s

2

)− 1
2

dV (s, t)

=
1
8

∫ 1

0

∫ 9

4

1
t
dt ds

=
1
8

log
(

9
4

)
.

(7.) Let f : R2 → R , ψ : R→ R be continuous functions such that 0 ≤ ψ(x).

Show that g(x) =
∫ ψ(x)

0

f(x, y) dV (y) is continuous at all x ∈ R.

The idea is to split the integral into two parts where in one the dependence on x is in the
upper limit and in the other the dependence is as an argument of f .

Fix a ∈ R. To show that g is continuous at a ∈ R, we have to show the definition of continuity
is satisfied: that for all ε > 0 there is a δ > 0 such that

|g(x)− g(a)| < ε whenever x ∈ R and |x− a| < δ.

Let M = sup{ψ(x) : x ∈ [a−1, a+1]} and N = sup{|f(x, y)| : (x, y) ∈ [a−1, a+1]× [−1,M+1]}.
The suprema exist because continuous functions are bounded on compact sets. Now choose ε > 0.
By the continuity of ψ, there is δ1 > 0 so that

|ψ(x)− ψ(a)| < ε

2N + 1
whenever x ∈ R and |x− a| < δ1.

Since f is continuous on the compact set R = [a−1, a+1]×[−1,M+1], it is uniformly continuous.
There is a δ2 > 0 such that

|f(x, y)− f(a, b)| < ε

2M + 1
whenever (x, y), (a, b) ∈ R and ‖(x, y)− (a, b)‖ < δ2.

I claim δ = min{δ1, δ2, 1} will work for g. Suppose that x ∈ R and |x−a| < δ so x ∈ [a−1, a+1].
For simplicity let’s argue in case ψ(x) ≥ ψ(a). Then since ψ(x), ψ(a) ∈ [−1,M +1], |f(x, y)| ≤ N
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and ‖(x, y)− (a, y)‖ < δ for y ∈ [ψ(a), ψ(x)] ⊆ [−1,M + 1] so

|g(x)− g(a)| =

∣∣∣∣∣
∫ ψ(x)

0

f(x, y) dy −
∫ ψ(a)

0

f(a, y) dy

∣∣∣∣∣
=

∣∣∣∣∣
∫ ψ(x)

0

f(x, y)− f(a, y) dy +
∫ ψ(x)

0

f(a, y) dy −
∫ ψ(a)

0

f(a, y) dy

∣∣∣∣∣
≤

∣∣∣∣∣
∫ ψ(x)

0

f(x, y)− f(a, y) dy

∣∣∣∣∣+

∣∣∣∣∣
∫ ψ(x)

ψ(a)

f(x, y) dy

∣∣∣∣∣
≤
∫ ψ(x)

0

|f(x, y)− f(a, y)| dy +
∫ ψ(x)

ψ(a)

|f(x, y)| dy

≤
∫ ψ(x)

0

ε

2M + 1
dy +

∫ ψ(x)

ψ(a)

N dy

=
ψ(x)ε

2M + 1
+N |ψ(x)− ψ(a)|

<
Mε

2M + 1
+

Nε

2N + 1
< ε.

If ψ(a) > ψ(x) then swap upper and lower limits in the third line and argue similarly. We have
shown g is continuous at a, and as a was arbitrary, continuous on R.

(8.) Define: E ⊆ Rn is a Jordan Region. Let f : [a, b] → R be be a nonnegative integrable
function. Show that E is a Jordan region and find its volume V(E), where

E = {(x, y) ∈ R2 : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}.

A bounded set E ⊆ Rd is a Jordan Region if its characteristic function χE is integrable on
some aligned rectangle R containing E, or equivalently, its volume V (E) =

∫
R
χE dV exists.

The idea is that the union of the strips under f over the little subintervals of the partition
that shows f is integrable gives an approximation to E so that the integral of f is the area of E.

We are given that 0 ≤ f is an integrable function. Hence it is bounded: there is M ∈ R such
that M = sup{f(x) : x ∈ [a, b]}. Take the rectangle R = [a, b]× [0,M ] so that E ⊆ R. To show
that χE is integrable on R, we will use the theorem that says that χE s integrable on R if and
only if for every ε > 0 there is a partition P of R such that

U(χE ,P)− L(χE ,P) < ε.

Since f is integrable on [a, b], there is a partition

G = {a = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xk = b}

such that one dimensional upper minus lower sums satisfy

U(f,G)− L(f,G) =
k∑
i=1

(Mi −mi)(xi − xi−1) < ε

where
Mi = sup

x∈[xi−1,xi]

f(x), mi = inf
x∈[xi−1,xi]

f(x).
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Now use the xi’s as cut points of [a, b] in the x-direction and use both sets Mi and mi as cut
points of [0,M ] for the y direction. Subdivide the vertical further, so that no rectangle has height
greater than ε. We may take the y-cut points

{Mi : i = 1, . . . , k} ∪ {mj : j = 1, . . . , k} ∪ {εh : h ∈ N and εh ≤M}
= {0 = y0 ≤ y1 ≤ y2 ≤ · · · ≤ y` = M}.

Together they make a two dimensional partition P of R.
Denote the subrectangles of P by Ri,j = [xi−1, xi]× [yj−1, yj ]. Let

Mi,j = sup
(x,y)∈Ri,j

χE(x, y), mi,j = inf
(x,y)∈Ri,j

χE(x, y).

Observe that Mi,j = 1 exactly when Ri,j ∩ E 6= ∅, which happens for rectangles that touch and
are below the graph of f . If f takes its max on [xi−1, xi] this is for yj−1 ≤Mi and if f does not
take its max then for yj ≤ Mi. Similarly, mi,j = 1 exacty when Ri,j ⊂ E. If f takes its min on
[xi−1, xi] this is for yj+1 ≤ mi and if f does not take its min then for yj ≤ mi.

Consider the upper sum for a fixed xi.

∑̀
j=1

Mi,jV (Ri.j) ≤
∑

j:yj−1≤Mi

(xi−xi−1)(yj−yj−1) ≤ (Mi+yj−yj−1)(xi−xi−1) ≤ (Mi+ε)(xi−xi−1).

Also the lower sum for a fixed xi.

∑̀
j=1

mi,jV (Ri.j) ≥
∑

j:yj+1≤mi

(xi−xi−1)(yj−yj−1) ≥ (mi−yj+1+yj)(xi−xi−1) ≥ (mi−ε)(xi−xi−1).

It follows that the difference for a fixed xi is

∑̀
j=1

(Mi,j −mi,j)V (Ri.j) ≤ (Mi −mi + 2ε)(xi − xi−1).

Summing over i gives the difference for χE

U(χE ,P)− L(χE ,P) =
k∑
i=1

∑̀
j=1

(Mi,j −mi,j)V (Ri.j)

≤
k∑
i=1

(Mi −mi + 2ε)(xi − xi−1)

= U(f,G)− L(f,G) + 2ε(b− a)
< [1 + 2(b− a)]ε.

As ε was arbitrary, this shows that E is a Jordan Domain.
Moreover, the upper and lower sums approximate the integrals. Nomely,

U(χE ,P) =
k∑
i=1

∑̀
j=1

Mi,jV (Ri.j)

≤
k∑
i=1

(Mi + ε)(xi − xi−1)

= U(f,G) + ε(b− a).
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Similarly
L(χE ,P) ≥ L(f,G)− ε(b− a).

The upper and lower sums approximate the integral of f :∫ b

a

f(x) dx− ε ≤ L(f,G) ≤ U(f,G) ≤
∫ b

a

f(x) dx+ ε

Hence ∫ b

a

f(x) dx− ε− ε(b− a) ≤ L(f,G)− ε(b− a) ≤

L(χE ,P) ≤ V (E) =
∫
R

χE dV ≤ U(χE ,P)

≤ U(f,G) + ε(b− a) ≤
∫ b

a

f(x) dx+ ε+ ε(b− a).

Since ε is arbitrary we see that the “area under the graph of f is the integral”

V (E) =
∫ b

a

f(x) dx.
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