
Math 3220 § 2.
Treibergs

Sample Problems for Third Midterm Name:
March 18, 2013

Questions 1–4 appeared in my Fall 2000 and Fall 2001 Math 3220 exams
(1.)Let f : Rn → Rn be differentiable at a ∈ Rn.

(a.) Let g : Rn → R be defined by g(x) = x • f(x), (dot product.) Find the total derivative
(differential) Dg(a)(h) where h ∈ Rn.

(b.) Without using the product theorem, prove your answer.

(2.) For each part, determine whether the statement is TRUE or FALSE. If the statement is true,
give a justification. If the statement is false, give a counterexample. You may use theorems.

(a.) Statement. Let f : R2 → R be continuous. Suppose that for all (x, y) ∈ R2 both

lim
h→0

f(x+ h, y)− f(x, y)
h

and lim
k→0

f(x, y + k)− f(x, y)
k

exist. Then f is differentiable at (1, 2).

(b.) Statement. Suppose f : R2 → R is a C2 function for which the third partial derivatives
fxxy(x, y) exist for all (x, y) ∈ R2 such that fxxy(x, y) is continuous at (0, 0). Then fxyx(0, 0)
and fyxx(0, 0) exist and are equal: fxxy(0, 0) = fxyx(0, 0) = fyxx(0, 0).

(3.) Suppose f ,g : R2 → R2. Assume that g is differentiable at x0 ∈ R2 and that for some α > 1
and M <∞ we have

‖f(x)− g(x)‖ ≤M‖x− x0‖α

for all x ∈ R2. Show that f is differentiable at x0 and that Df(x0) = Dg(x0).

(4.) Let F : R5 → R2 be given by F = (f1, f2) where

f1(v, w, x, y, z) = v + w2 + x+ y,

f2(v, w, x, y, z) = vy + wz.

Suppose that there is an open neighborhood U ⊆ R3 containing the point (3, 4, 5) and C1 functions
G : U → R2 where G = (g1, g2) so that for all (x, y, z) ∈ U ,

g1(3, 4, 5) =1,
g2(3, 4, 5) =2;

f1(g1(x, y, z), g2(x, y, z), x, y, z) =12,
f2(g1(x, y, z), g2(x, y, z), x, y, z) =14.

What is the differential DG(3, 4, 5)(h, k, `) ?

More problems.

(E1.) Suppose f : R3 → R2 is given by f(x, y, z) = (xy+ x2z3, x4 + y+ y5z6). Is f differentiable
on R3? If so, find the differential df(x, y, z)(h, k, `).

(E2.) Find the extrema of φ(x, y, z) = x2 + y2 + z2 subject to the constraints x − y = 1 and
y2 − z2 = 1.

(E3.) Suppose that r and α are positive, E ⊆ Rn is a convex set such that Ē ⊆ Br(0), and
that there exists a sequence xk ∈ E such that xk → 0 as k → ∞. If f : Br(0) → R is
continuously differentiable and |f(x)| ≤ ‖x‖α for all x ∈ E, prove that there is an M < ∞ such
that |f(x)| ≤M‖x‖ for x ∈ E.
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(E4.) Show that f(x, y) has partial derivatives for all (x, y) ∈ R2 but f is not differentiable at
(0, 0), where

f(x, y) =


x3 + 2y3 + 4xy2

x2 + 2y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

(E5.) Suppose that f : Rp → R is differentiable at a ∈ Rp and df(a) 6= 0. Show that ∇f(a)
points in the direction of fastest increase (that has the largest directional derivative.)

(E6.) Let S ⊆ R4 be a locally parameterized C1 2-dimensional surface near b = (0, 2, 0, 2), where

S = {(x, y, z, w) ∈ R4 : x2 + y2 + z2 + w2 = 8, x+ y + z − w = 0}.

Show that the tangent plane to S at b is {(s, 2− s
2 −

t
2 , t, 2 + s

2 + t
2 ) : s, t ∈ R}.

(E7.) Suppose that f : Rp → R is C3 and some point a ∈ Rp is critical df(a) = 0 and d2f(a)
has both a positive and a negative eigenvalue. Show that the critical point a is a saddle point:
for every δ > 0 there are points x,y ∈ Bδ(a) so that f(x) < f(a) < f(y).

(E7*.) (Variation of above.) Suppose that f : Rp → R is C1 function such that some point
a ∈ Rp is is a critical point: df(a) = 0. Assume that the second partial derivatives exist in a
neighborhood of a, are continuous at a and that the Hessian d2f(a) has both a positive and a
negative eigenvalue. Show that the critical point a is a saddle point: for every δ > 0 there are
points x,y ∈ Bδ(a) so that f(x) < f(a) < f(y).

(E8.) Let F : R3 → R3 be given by F (x, y, z) = (x2 + y2, xz, y3 − z3).
Assume that there is an open set U about P0 = (3, 1, 2) and that V = F (U) is an open set

about Q0 = F (P0) on which F has an inverse function F−1 ∈ C1(V,U). Find D[F−1](Q0).

(E9.) Suppose G : R5 → R3 is given by G(p, q, x, y, z) = (px+ y2, q2z, py− qz+x). Assume that
there is an open set U around (3, 2) and a C1 function H : U → R3 so that H(3, 2) = (1, 5, 4)
and for all (p, q) ∈ U we have G(p, q,H(p, q)) = (28, 16, 8). Find DH(3, 2).

Solutions.

(1.)Let f : Rn → Rn be differentiable at a ∈ Rn. Let g : Rn → R be defined by g(x) = x • f(x),
(dot product.) Find the total derivative (differential) Dg(a)(h) where h ∈ Rn. Without using the
product theorem, prove your answer.

The product rule gives Dg(x)(h) = D(x • f(x))(h) = h • g(x) + x • Df(x)(h). This is the
differential because

lim
h→0

‖g(x+ h)− g(x)−Dg(x)(h)‖
‖h‖

=

= lim
h→0

‖(x+ h) • f(x+ h)− x • f(x)− h • f(x)− x •Df(x)(h)‖
‖h‖

= lim
h→0

‖x • (f(x+ h)− f(x)−Df(x)(h)) + h • (f(x+ h)− f(x))‖
‖h‖

≤ lim
h→0

{
‖x‖‖f(x+ h)− f(x)−Df(x)(h)‖

‖h‖
+
‖h‖
‖h‖
‖f(x+ h)− f(x)‖

}
=‖x‖ · 0 + 1 · 0 = 0,

where we have used the Schwarz Inequality.

(2a.) Statement. Let f : R2 → R be continuous. Suppose that for all (x, y) ∈ R2 both

lim
h→0

f(x+ h, y)− f(x, y)
h

and lim
k→0

f(x, y + k)− f(x, y)
k
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exist. Then f is differentiable at (1, 2).
FALSE! The two limits are nothing more than fx(x, y) and fy(x, y), the partial derivatives.

There are functions where the partial derivatives exist at all points, but the function is not
differentiable. (If it were known that fx and fy are continuous at some point a ∈ R2, then our
theorem says that the function would be differentiable at a.) An example of such a function is

f(x, y) =

{
(x−1)2(y−2)

(x−1)2+(y−2)2 , if (x, y) 6= (1, 2);

0. if (x, y) = (1, 2).

Away from (1, 2), the denominator avoids zero, so the partial derivatives exist and are continuous,
hence f is differentiable. Also, observe that f(1, y) = f(x, 2) = 0 for all x, y. Hence fy(1, y) =
fx(x, 2) = 0 so the partial derivatives exist at (1, 2). If the function were differentiable at (1, 2),
then the vanishing of the partial derivatives implies that the differential would have to be T (h, k) =
0 all h, k. But the limit

lim
(h,k)→(1,2)

‖f(1 + h, 2 + k)− f(1, 2)− T (h, k)‖
‖(h, k)‖

= lim
(h,k)→(1,2)

‖f(1 + h, 2 + k)‖
‖(h, k)‖

does not exist. To see this, consider the first approach (h, k) = (t, 0) as t → 0. The numerator
vanishes so along this approach the limit would be zero. Then consider the second approach
(h, k) = (t, t) for t > 0. Then f(1 + t, 2 + t) = t/2 and ‖(t, t)‖ =

√
2|t|. Then the difference

quotient tends to 1/
√

2. Since the two approaches have different limits, there is no two dimensional
limit: the function is not differentiable at (1, 2).

(2b.) Statement. Suppose f : R2 → R is a C2 function for which the third partial derivatives
fxxy(x, y) exist for all (x, y) ∈ R2 such that fxxy(x, y) is continuous at (0, 0). Then fxyx(0, 0)
and fyxx(0, 0) exist and are equal fxxy(0, 0) = fxyx(0, 0) = fyxx(0, 0).

TRUE! This is just an application of the equality of cross partials theorem to fx and fy
which are C1 by assumption, since f is C2. We are given that (fx)xy exists and is continuous
at (0, 0). But, this is sufficient to be able to assert the existence of the other mixed partial
derivative, and that it is equal to the first at the point (fx)xy(0, 0) = (fx)yx(0, 0). But since
f ∈ C2(R2), we also have that fxy = fyx for all of R2. Hence, all third derivatives exist and are
equal fxxy(0, 0) = (fx)xy(0, 0) = (fx)yx(0, 0) = (fxy)x(0, 0) = (fyx)x(0, 0) = fyxx(0, 0).

(3.) Suppose f ,g : R2 → R2. Assume that g is differentiable at x0 ∈ R2 and that for some α > 1
and M <∞ we have

‖f(x)− g(x)‖ ≤M‖x− x0‖α

for all x ∈ R2. Show that f is differentiable at x0 and that Df(x0) = Dg(x0).
It suffices to show that the difference quotient of f limits to zero with differential dg(x0).

Now, by adding and subtracting, using the triangle inequality, the hypothesis and α > 1,

lim
h→0

‖f(x0 + h)− f(x0)−Dg(x0)(h)‖
‖h‖

=

= lim
h→0

‖f(x0 + h)− g(x0 + h)− f(x0) + g(x0) + g(x0 + h)− g(x0)−Dg(x0)(h)‖
‖h‖

≤ lim
h→0

‖f(x0 + h)− g(x0 + h)‖+ ‖g(x0)− f(x0)‖+ ‖g(x0 + h)− g(x0)−Dg(x0)(h)‖
‖h‖

≤ lim
h→0

{
‖h‖α

‖h‖
+
‖0‖α

‖h‖
+
‖g(x0 + h)− g(x0)−Dg(x0)(h)‖

‖h‖

}
= lim
h→0
‖h‖α−1 + 0 + lim

h→0

‖g(x0 + h)− g(x0)−Dg(x0)(h)‖
‖h‖

= 0 + 0 + 0.
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(4*.) (Slight generalization.) Let F : R5 → R2 be given by F = (f1, f2) where f1(v, w, x, y, z) =
v+w2+x+y, f2(v, w, x, y, z) = vy+wz. Show that there is a neighborhood U ⊆ R3 containing the
point (3, 4, 5) and C1 functions G : U → R2 where G = (g1, g2) so that g1(3, 4, 5) = 1, g2(3, 4, 5) =
2 and for all (x, y, z) ∈ U , f1(g1(x, y, z), g2(x, y, z), x, y, z) = 12, f2(g1(x, y, z), g2(x, y, z), x, y, z) =
14. Find the total derivative DG(3, 4, 5)(h, j, k).

You were given the first conclusion in problem (4.) which can be answered knowing the chain
rule. (4*) is an application of the Implicit Function Theorem. (This theorem says that if there
is enough differentiability, and if the problem can be solved for the linear approximations given
by the differential, then, at least in a small neighborhood, the nonlinear problem can be solved
as well.) The function F : R2+3 → R2 is C1 on R5 such that F (1, 2, 3, 4, 5) = (12, 14) = c.
To solve for v and w in terms of (x, y, z) we need to be able to solve the linearization. If we
put u = (v, w) and x = (x, y, z), we are looking for G : R3 → R2 so that F (G(x),x) = c
and G(3, 4, 5) = (1, 2). Taking Dx gives DuF (G(x),x) ◦ DG(x) + DxF (G(x),x) = 0 which
says that we may solve for the differential DG(x) whenever DuF (G(x),x) is invertible and then
DG(x) = −[DuF (G(x),x)]−1 ◦ DxF (G(x),x). At the center point (3, 4, 5), the matrix of the
transformation is

DuF (G(3, 4, 5), (3, 4, 5)) =

∂f1
∂v

∂f1
∂w

∂f2
∂v

∂f2
∂w


∣∣∣∣∣∣∣∣
x=(3,4,5)

=

1 2w

y z


∣∣∣∣∣∣∣∣
(u,x)=(1,2,3,4,5)

=

1 4

4 5


which is invertible. Hence there is an open set U ⊆ R3 such that (3, 4, 5) ∈ U and a C1 function
G : U → R2 so that G(2, 3, 4) = (1, 2) and F (G(x),x) = c for all x ∈ U . Thus, we have checked
the differentiability and the solubility of the linearized problem is satisfied. The IFT gives the
existence of a G ∈ C1(U,R2) so that G(2, 3, 4) = (1, 2) and F (G(x),x) = c for all x ∈ U . In this
problem, ypu were given this as a hypothesis. Then take the total derivative of F (G(x),x) = c
with respect to x and solve for DG(x) at the given point, as above.) By the formula for the
differential

DG(3, 4, 5)


h

k

`

 = −[DuF (G(3, 4, 5), (3, 4, 5))]−1 ◦DxF (G(3, 4, 5), (3, 4, 5))


h

k

`



= −


∂f1

∂v
∂f1
∂w

∂f2
∂v

∂f2
∂w


∣∣∣∣∣∣∣∣
x=(3,4,5)


−1

∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z


∣∣∣∣∣∣∣∣
x=(3,4,5)




h

k

`



= −


1 2w

y z


∣∣∣∣∣∣∣∣
(u,x)=(1,2,3,4,5)


−1

1 1 0

0 v w


∣∣∣∣∣∣∣∣
(u,x)=(1,2,3,4,5)




h

k

`
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DG(3, 4, 5)


h

k

`

 = −

1 4

4 5


−11 1 0

0 1 2



h

k

`

 =
1
11

 5 −4

−4 1


1 1 0

0 1 2



h

k

`



=
1
11

−5 −1 8

4 3 −2



h

k

`

 =
1
11

−5h− k + 8`

4h+ 3k − 2`

 .

(E1.) Suppose f : R3 → R2 is given by f(x, y, z) = (xy+ x2z3, x4 + y+ y5z6). Is f differentiable
on R3? If so, find the differential df(x, y, z)(h, k, `).

YES! The partial derivatives are

∂f

∂x


x

y

z

 =

y + 2xz3

4x3

 ,
∂f

∂y


x

y

z

 =

 x

1 + 5y4z6

 ,
∂f

∂z


x

y

z

 =

3x2z2

6y5z5


Since f is a polynomial function, its first partial derivatives exist at all points and are polynomial
functions. But by the theorem giving conditions for differentiability, since the partial derivatives
are continuous at all points, the function is differentiable at all points. The differential is given
by the 2× 3 Jacobian matrix

df


x

y

z




h

k

`

 =

∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z



h

k

`

 =

y + 2xz3 x 3x2z2

4x3 1 + 5y4z6 6y5z5



h

k

`

 .

(E2.) Find the extrema of φ(x, y, z) = x2 + y2 + z2 subject to the constraints x − y = 1 and
y2 − z2 = 1.

Let g(x, y, z) = x− y − 1 and h(x, y, z) = y2 − z2 − 1. Then using Lagrange Multipliers, the
extrema occur as solutions (x, y, z, λ, µ) of the system g = 0, h = 0, ∇φ = λ∇g + µ∇h. Hence

(2x, 2y, 2z) = λ(1,−1, 0) + µ(0, 2y,−2z).

Thus 2x = λ, 2y = −λ+ 2µy and z = −µz. From the last equation, either z = 0 or µ = −1.
If µ = −1 then λ = −4y. Since 2x = λ we get x + 2y = 0. Now g = 0 implies y = −1/3.

However, h = 0 implies 0 = 1/9− z2 − 1 which is a contradiction.
If z = 0 then h = 0 implies y = ±1. Since g = 0 we have x = 2 when y = 1 and x = 0

when y = −1. Thus the only candidates for extrema subject to the constraints g = h = 0 are
φ(2, 1, 0) = 5 and φ(0,−1, 0) = 1. To see whether these are maxima or minima, consider the
geometric interpretation. The problem asks to find the closest or farthest points of the solution
set g = h = 0 to the origin. However h = 0 corresponds to a hyperbolic cylinder (union of lines
parallel to the x-axis that pass through a hyperbola in the y-z plane.) The constraint g = 0 is a
plane parallel to the z-axis that crosses the hyperboloid. Thus the constraint set consists of two
hyperbolas in the g = 0 plane. The level curves on φ are circles in this plane. As there are only
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two candidates for extrema, these occur when the circles meet (are tangent to) the two arcs of the
hyperbola. Larger circles cross the arcs. This means that (0,−1, 0) is a minimum and (2, 1, 0) is
a local but not global minimum, and there is no maximum since one can attain arbitrarily large
φ on the constraint set.

(E3.) Suppose that r and α are positive, E ⊆ Rn is a convex set such that Ē ⊆ Br(0), and
that there exists a sequence xk ∈ E such that xk → 0 as k → ∞. If f : Br(0) → R is
continuously differentiable and |f(x)| ≤ ‖x‖α for all x ∈ E, prove that there is an M < ∞ such
that |f(x)| ≤M‖x‖ for x ∈ E.

Since the partial derivatives are continuous, the function x 7→ ‖df(x)‖ is continuous. As
Ē is closed and bounded, it is compact so the continuous function attains its maximum M =
sup{‖df(x)‖ : x ∈ Ē} <∞. Since E is convex, for any pair of points x,xk ∈ E the line segment
[xk,x] is in E. Since f is differentiable in a neighborhood of [xk,x], we may apply the Mean
Value Theorem. There is a c ∈ [xk,x] so that

f(x) = f(xk) + df(c)(x− xk)

Estimating using triangle and Schwarz inequalities, and the hypothesis

|f(x)| ≤ |f(xk)|+ ‖df(c)‖‖x− xk‖
≤ ‖xk‖α +M‖x− xk‖.

Now since α > 0, by passing to the limit as k →∞ we obtain the estimate

|f(x)| ≤ 0 +M‖x‖.

(E4.) Theorem. f(x, y) has partial derivatives for all (x, y) ∈ R2 but f is not differentiable at
(0, 0), where

f(x, y) =


x3 + 2y3 + 4xy2

x2 + 2y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

Since f is a rational function whose denominator is nonzero away from (0, 0), the partial
derivatives exist and are rational functions there. At (0, 0),

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)
h

= lim
h→0

h3

h2 − 0
h

= 1

and
∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)
h

= lim
h→0

2h3

2h2 − 0
h

= 1

so both partial derivatives exist at (0, 0) as well. Therefore, supposing that f were differen-
tiable at (0, 0), its differential would be df(0, 0) = (1, 1). Now lets check if this differential
well-approximates f near zero.

lim
(h,k)→(0,0)

f(0 + h, 0 + k)− f(0, 0)− df(0, 0)
(
h
k

)
‖(h, k)− (0, 0)‖

= lim
(h,k)→(0,0)

h3+2k3+4hk2

h2+2k2 − 0− (h+ k)
√
h2 + k2

= lim
(h,k)→(0,0)

2hk2 − h2k

(h2 + 2k2)
√
h2 + k2

.

Along the path (h, k) = (t, 0) the limit is zero. However, taking the path (h, k) = (t, t),
the limit is 1/(3

√
2). Because the limits along two approach paths disagree, there is no two

dimensional limit. The function is not well approximated by the only possible affine function,
hence it is not differentiable at (0, 0).
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(E5.) Theorem. Suppose that f : Rp → R is differentiable at a ∈ Rp and df(a) 6= 0. Then ∇f(a)
points in the direction of fastest increase (that has the largest directional derivative.)

Let u be a unit vector. Then the directional derivative in the u direction is Duf(a) =
∇f(a) · u. By the Schwarz inequality |Duf(a)| ≤ ‖∇f(a)‖‖u‖ = ‖∇f(a)‖ with equality only if
u = ±∇f(a)/‖∇f(a)‖. Thus Duf(a) = ‖∇f(a)‖ if and only if u = ∇f(a)/‖∇f(a)‖, which is in
the gradient direction.

(E6.) Theorem. S ⊆ R4 is a locally parameterized 2-dimensional surface near b = (0, 2, 0, 2),
where

S = {(x, y, z, w) ∈ R4 : x2 + y2 + z2 + w2 = 8, x+ y + z − w = 0}.

The tangent plane to S at b is {(s, 2− s
2 −

t
2 , t, 2 + s

2 + t
2 ) : s, t ∈ R}.

The surface is the intersection of a 3-plane through the origin and the 3-sphere about the
origin of radius 2

√
2 which is a great 2-sphere. Let’s write the surface near b as a graph over the

(x, z)-plane, for x2+z2 < 1. Note that the x and z coordinates of b are in this open neighborhood,
and that the 3-plane is not perpendicular to the x − z-plane. Solving the second equation gives
y = w − x − z. Substituting x = u and z = v into the first and solving for w gives G : U → R4

where we take the “+” square root because G(0, 0) = (0, 2, 0, 2) and U = B1((0, 0)):

G(u, v) =

(
u,
−u− v +

√
16− 3u2 − 2uv − 3v2

2
, v,

u+ v +
√

16− 3u2 − 2uv − 3v2

2

)

G ∈ C1(U,R4) because 16 − 3(u2 + v2) − 2uv > 16 − 3 · 1 − 1 = 12 since 2uv ≤ u2 + v2 < 1.
One checks that G(u, v) ∈ S. Let V = {(x, y, z, w) : x2 + z2 < 1, y > 0, w > 0}. One checks
that b ∈ S ∩ V = G(U). We need that G : U → S ∩ V is one-to-one. But if (ui, vi) ∈ U and
G((u1, v1)) = G((u2, v2)) then x- and z-coordinate functions give u1 = u2 and v1 = v2 so G is
one-to-one. Finally we check that G is two dimensional. dG((u, v)) is a 4× 2 matrix given by

dG((u, v)) =



1 0

− 1
2 −

−3u−v
2
√

16−3u2−2uv−3v2
− 1

2 −
−u−3v

2
√

16−3u2−2uv−3v2

0 1

1
2 −

−3u−v
2
√

16−3u2−2uv−3v2
1
2 −

−u−3v
2
√

16−3u2−2uv−3v2


, dG((0, 0)) =



1 0

− 1
2 − 1

2

0 1

1
2

1
2


.

dG is rank two because the first and third rows are independent, hence G(U) is a parametrized
2-surface. The tangent space is b + dG((0, 0))(R2).

(E7.) Theorem. Suppose that f : Rp → R is C3 and some point a ∈ Rp is critical df(a) = 0 and
d2f(a) has both a positive and a negative eigenvalue. Then the critical point a is a saddle point:
for every δ > 0 there are points x,y ∈ Bδ(a) so that f(x) < f(a) < f(y).

By continuity of the third partial derivatives, a continuous function takes its maximum on a

compact set, namely M2 = sup

{∑
i,j,k

(
∂3f(u)

∂xi∂xj∂xk

)2

: ‖u− a‖ ≤ 1

}
. It follows that for any

h ∈ Rp, and c ∈ B1(a) that |d3f(c)(h)3| =
∣∣∣∣∑i,j,k

∂3f(c)
∂xi∂xj∂xk

hihjhk

∣∣∣∣ ≤M‖h‖3 by applying the

Schwarz inequality to each sum. Now by assumption there are v,w ∈ Rp unit eigenvectors such
that d2f(a)v = λ1v and d2f(a)w = λ2w with λ1 < 0 < λ2. Assume that 0 < δ < 1 is so small
that Mδ < min{|λ1|, |λ2|}. Since second derivatives are differentiable, we can apply Taylor’s

7



formula to second order. We get for each 0 < t < δ some c ∈ (0, 1) such that

f(a + tv) = f(a) + df(a)(tv) +
1
2
t2v · d2f(a)v +

1
6
t3d3f(a + ctv)(v)3

≤ f(a) + 0 +
1
2
λ1t

2v · v +
1
6
t3M‖v‖3

≤ f(a) +
1
2
t2
(
λ1 +

1
3
tM

)
≤ f(a) +

1
2
t2
(
λ1 +

1
3
|λ1|

)
< f(a).

Similarly, for each 0 < t < δ, there is a c ∈ (0, 1) so that

f(a + tw) ≥ f(a) +
1
2
λ2t

2w ·w − 1
6
t3M‖w‖3 ≥ f(a) +

1
2
t2
(
λ2 −

1
3
tM

)
≥ f(a) +

1
2
t2
(
λ2 −

1
3
|λ2|

)
> f(a).

(E7*.) Theorem. Assume that f : Rp → R is C1 function such that some point a ∈ Rp is is a
critical point: df(a) = 0. Assume that the second partial derivatives exist in a neighborhood of a,
are continuous at a and that the Hessian d2f(a) has both a positive and a negative eigenvalue at
a. Show that the critical point a is a saddle point: for every δ > 0 there are points x,y ∈ Bδ(a)
so that f(x) < f(a) < f(y).
Lemma. Suppose A and B are p× p real symmetric matrices such that A has both positive and
negative eigenvalues λ1 < 0 < λ2 and such that the operator norm ‖A − B‖ < 1

2 min{|λ1|, λ2}.
Then the corresponding unit eigenvectors vi of A satisfy v1 ·Bv1 <

1
2λ1 and v2 ·Bv2 >

1
2λ1.

Proof of Lemma. Let vi be unit eigenvectors of A so that Avi = λivi for i = 1, 2. Then

v1 ·Bv1 = v1 ·Av1 + v1 · (B −A)v1

≤ λ1‖v1‖2 + ‖B −A‖ ‖v1‖2

≤ λ1‖v1‖2 +
1
2
|λ1| ‖v1‖2 ≤

1
2
λ1‖v1‖2.

Similarly

v2 ·Bv2 = v2 ·Av2 + v2 · (B −A)v2

≥ λ2‖v2‖2 − ‖B −A‖ ‖v2‖2

≥ λ2‖v2‖2 −
1
2
|λ2| ‖v2‖2 ≥

1
2
λ2‖v2‖2.

Proof of Theorem. By assumption there are vi ∈ Rp unit eigenvectors such that d2f(a)vi =
λivi with λ1 < 0 < λ2. Assume that 0 < δ < 1 is so small that the second partial derivatives of f
exist on Bδ(a) and by continuity ‖d2f(b)− d2f((a)‖ < 1

2 min{|λ1|, λ2} whenever b ∈ Bδ(a). We
apply the Lemma to b = a+ ctvi. Since first derivatives are differentiable, we can apply Taylor’s
formula to first order. We get for each 0 < t < δ some c ∈ (0, 1) such that at b = a + ctv1,

f(a + tv1) = f(a) + df(a)(tv1) +
1
2
t2v1 · d2f(a + ctv1)v1

≤ f(a) + 0 +
1
4
λ1t

2‖v1‖2 < f(a).

Similarly, for each 0 < t < δ, there is a c ∈ (0, 1) so that at b = a + ctv2,

f(a + tv2) = f(a) + df(a)(tv2) +
1
2
t2v2 · d2f(a + ctv2)v2

≥ f(a) + 0 +
1
4
λ2t

2‖v2‖2 > f(a).
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(E8*.) (Slight generalization.) Theorem. Let F : R3 → R3 be given by F (x, y, z) = (x2 +
y2, xz, y3 − z3). Then there is an open set U about P0 = (3, 1, 2) so that F is invertible on U
and that F (U) is an open set about Q0 = F (P0) on which F−1 is C1. We find D[F−1](Q) where
Q ∈ F (U).

The function F (x, y, z) polynomial, therefore C1. We check that the determinant of the
Jacobian matrix ∆F (P0) 6= 0 and all of the conclusions follow from the Inverse Function Theorem.
The fact that the linearization was invertible at the point enables you to conclude the existence
of an inverse function. You were, however, given this in the problem.

LetG ∈ C1(V,R3) be the inverse function of F . Thus in U we have the equation F (G(x, y, z)) =
(x, y, z). Apply the chain rule, and solve for DG at the point. Thus D(F ◦ G) = DF (P0) ◦
DG(Q0) = I so DG(Q0) = (DF (P0))−1. The matrix of DF (P0) is the Jacobian matrix

DF (P ) =


∂F1
∂x

∂F1
∂y

∂F1
∂z

∂F2
∂x

∂F2
∂y

∂F2
∂z

∂F3
∂x

∂F3
∂y

∂F3
∂z

 =


2x 2y 0

z 0 x

0 3y2 −3z2

 ; DF (P0) =


6 2 0

2 0 3

0 3 −12

 .

Thus ∆F (P0) = det(DFx(P0)) = 6 6= 0. Finally, for Q near (10, 6,−7) = Q0 = F (P0), so
DF−1(Q) =

[DF (F−1(Q))]−1 =
1

6yz3 − 6x2y2


−3xy2 3z3 3zy2

6yz2 −6xz2 −6xy2

2xy −2x2 −2yz

 ; DF−1(Q0) =


3
2 −4 −1

−4 12 3

−1 3 2
3


where (x, y, z) = F−1(Q).
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(E9*.) (Slight generalization.) Theorem. Suppose G : R5 → R3 is given by G(p, q, x, y, z) = (px+
y2, q2z, py−qz+x). Then there is an open set U around T0 = (3, 2) and a C1 function H : U → R3

so that H(3, 2) = (1, 5, 4) = X0 and for all (p, q) ∈ U we have G(p, q,H(p, q)) = (28, 16, 8). We
find DH(3, 2) and DH(p, q).

The function G is polynomial so C1. We have to check that the linearization is soluble at
(3, 2, 1, 5, 4). Let T0 = (3, 2) and X0 = (1, 5, 4). This follows if the DxG part of the Jacobian
matrix is invertible.

DxG =


∂G1
∂x

∂G1
∂y

∂G1
∂z

∂G2
∂x

∂G2
∂y

∂G2
∂z

∂G3
∂x

∂G3
∂y

∂G3
∂z

 =


p 2y 0

0 0 q2

1 p −q

 ; DxG(T0, X0) =


3 10 0

0 0 4

1 3 −2


which is invertible since its determinant is 4. The Implicit Function Theorem applies and yields
the C1 function H as desired. (Again, you were given that there is H ∈ C1(U) satisfying
F (p, q,H(p, q)) = (28, 16, 8) for all (p, q) ∈ U . Find the differential of H by differentiating
the equation using the chain rule. Think of H : U → U ×R3 is given by H(p, q) = (p, q,H(p, q)),
and then differentiate G◦H = const using the chain rule. Thus DtH =

(
I

DtH

)
so 0 = Dt(G◦H) =

DtG + DxG ◦ DtH. Here the total derivative matrix has columns associated to t = (p, q) and
columns associated to x = (x, y, z) drivatives, DG = (DtG,DxG). To find the total derivative of
H we need the other part of the Jacobian

DtG =


∂G1
∂p

∂G1
∂q

∂G2
∂p

∂G2
∂q

∂G3
∂p

∂G3
∂q

 =


x 0

0 2qz

y −z

 ; DtG(T0, X0) =


1 0

0 16

5 −4

 ; DH(T0) =


−3 −16

− 25
4 −25

−10 48


since total derivative of implicit function DH(T ) = −[DxG(T,H(T ))]−1DtG(T,H(T )) =

1
∆


pq2 q2 0

2yq −pq 2y − p2

2yq2 −pq2 0




x 0

0 2qz

y −z

 =
1
∆


xpq2 2q3z

2xyq + 2y2 − yp2 p2z − 2pq2z − 2yz

2xyq2 −2pq3z


where ∆ = q2(p2 − 2y) and (x, y, z) = H(p, q).
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