Math 3220 § 1. Treibergs $a \tau$	Final Exam	Name: December 11, 2007
a single $8.5^{\circ} \times 11^{\circ}$ messaging devices unnecessary. Give and state the the total points. Do	ook exam except that you are allowed a "cheat sheet,' page of notes. Other notes, books, laptops and text s are prohibited. Calculators are permitted but are e complete solutions. Be clear about the order of logic orems and definitions that you use. There are [135] SEVEN of eight problems. If you do more than see he first seven will be graded. Cross out the problems be graded.	$\begin{array}{c} 2. \ \ /19 \\ 3. \ \ /19 \\ 4. \ \ /19 \\ 5. \ \ /19 \end{array}$

1. [19] Determine whether the following function $f : \mathbf{R}^2 \to \mathbf{R}$ is differentiable at (0, 0).

$$f(x,y) = \begin{cases} \frac{xy^5}{x^4 + y^4}, & \text{if } (x,y) \neq (0,0); \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Differentiable at (0,0): \bigcirc Not differentiable at (0,0): \bigcirc

Math 3220 § 1. Treibergs	Final Exam	Name: December 11, 2007
Your grades will be posted at my office	ce according to	Secret Id. :

2. [19] Let $K \subseteq \mathbf{R}^n$ be a compact subset. Suppose $\mathbf{x}_k \in K$, k = 1, 2, 3, ... is a sequence of points in K. Show that there is a subsequence \mathbf{x}_{k_j} that converges in K as $j \to \infty$.

Math 3220 § 1.	Final Exam	Name:
Treibergs		December 11, 2007

3. [19] Show that there is a neighborhood $U \subseteq \mathbf{R}^3$ of the point (1,2,3) and a C^1 function $G: U \to \mathbf{R}^2$ such that G(1,2,3) = (4,5) and $f(\mathbf{x}, G(\mathbf{x})) = (27,17)$ for all $\mathbf{x} \in U$ where $f: \mathbf{R}^5 \to \mathbf{R}^2$ is given by $f = (f_1, f_2)$ with

$$f_1(x, y, z, u, v) = x + yz + uv,$$

 $f_2(x, y, z, u, v) = xu + yv + z.$

Find dG(1, 2, 3).

Math 3220 § 1.	Final Exam	Name:
Treibergs		December 11, 2007

- 4. Let $f, f_n : \mathbf{R}^2 \to \mathbf{R}$ be functions for $n \in \mathbf{N}$. Suppose that for all $x \in \mathbf{R}^2$, $\lim_{n \to \infty} f_n(x) = f(x)$. Determine whether the statement is true or false. If true give a brief reason. If false, give a counterexample.
 - (a) [6] **Statement.** For every sequence $\mathbf{x}_k \in \mathbf{R}^2$, k = 1, 2, 3, ... which converges $\mathbf{x}_k \to \mathbf{x}$ we have $\lim_{k \to \infty} f_k(\mathbf{x}_k) = f(\mathbf{x})$. True \bigcirc False \bigcirc

(b) [6] **Statement.** Suppose all $f_k(\mathbf{x}) \in C^1(\mathbf{R}^2)$. Then f is continuous.

True 🔿	False

0

False \bigcirc

(c) [7] **Statement.** Let $R \subseteq \mathbf{R}^2$ be an aligned rectangle. Then $\int_R f(x) dV(x) = \lim_{n \to \infty} \int_R f_n(x) dV(x)$. True \bigcirc

Math 3220 \S 1.	Final Exam	Name:
Treibergs		December 11, 2007

5. Let $T = \{(x, y) \in \mathbf{R}^2 : -3 \le x \le 3, |x| \le y \le 3\}$. Consider $I = \int_T e^{-y^2} dV(x, y)$.

(a) [5] Why does the integral I exist?

(b) [5] Why can the integral I be reduced to an iterated integral?

(c) [9] Evaluate the integral I.

Math 3220 § 1.	Final Exam	Name:
Treibergs		December 11, 2007

- 6. Let $D \subseteq \mathbf{R}^2$ be the region in the first quadrant bounded by the curves $y = x, y^2 x^2 = 1, x^2 + y^2 = 4$, and $x^2 + y^2 = 9$.
 - (a) [10] Find an open set $U \subseteq \mathbf{R}^2$ with $A \subseteq U$, where $A = [0,1] \times [4,9]$ and a function $\phi: U \to \mathbf{R}^2$ such that $\phi(A) = D$, ϕ is C^1 , one-to-one and $\det(\mathrm{d}\phi(x,y)) \neq 0$ on U.

(b) [10] Using (a.), find the integral
$$\int_D \frac{xy}{x^2 + y^2} dV(x, y)$$
.

Math 3220 § 1.	Final Exam	Name:
Treibergs		December 11, 2007

7. [20] Let $f : \mathbf{R}^2 \to \mathbf{R}$, $\psi : \mathbf{R} \to \mathbf{R}$ be continuous functions such that $0 \le \psi(x)$. Show that $g(x) = \int_0^{\psi(x)} f(x, y) \, dV(y)$ is continuous at all $x \in \mathbf{R}$.

Math 3220 § 1.	Final Exam	Name:
Treibergs		December 11, 2007

8. (a) [3] Define: $E \subseteq \mathbf{R}^n$ is a Jordan Region.

(b) [17] Let $f:[a,b]\to {\bf R}$ be be a nonnegative integrable function. Show that

$$E = \{ (x, y) \in \mathbf{R}^2 : a \le x \le b, 0 \le y \le f(x) \}.$$

is a Jordan region. Find its volume V(E).