
Math 3220 § 2.
Treibergs

Sample Problems for Half of Final Name:
April 8, 2013

Half of the final will be devoted to material since the 3rd midterm. The sample problems on
this page reflect this part of the exam. The other half will be comprehensive.

Questions from Dec. 12, 2000 final
1.) Let F : R5 → R2 be given by F = (f1, f2) where

f1(v, w, x, y, z) = v + w2 + x+ y,

f2(v, w, x, y, z) = vy + wz.

Show that there is a neighborhood U ⊆ R3 containing the point (3, 4, 5) and C1 functions G : U →
R2 where G = (g1, g2) so that g1(3, 4, 5) = 1, g2(3, 4, 5) = 2 and for all (x, y, z) ∈ U ,

f1(g1(x, y, z), g2(x, y, z), x, y, z) =12,
f2(g1(x, y, z), g2(x, y, z), x, y, z) =14.

What is the differential DG(3, 4, 5)(h, j, k) ?
2.) Let f(x, y) : [a, b] × [c, d] → R be a continuously differentiable (C1) function. Let a < b be
finite numbers. Assume that

F (y) =
∫ b

a

f(x, y) dx

exists and is a continuous function for all y ∈ [c, d]. [We showed this in class.] Prove that F is
differentiable and that for all y ∈ [c, d], [Hint: Mean Value Theorem]

F ′(y) =
∫ b

a

∂f

∂y
(x, y) dx.

3.) Let f(x, y) : R2 → R. Prove if true; give a counterexample if false:
a.) Statement. Suppose one of the partial derivatives, say ∂f

∂x (x, y) exists for all (x, y) ∈ R2.
Then f is integrable on [0, 1]× [0, 1].

b.) Statement. Suppose f is integrable on the squares Qs = [−s, s] × [−s, s] for all s > 0
and

∫
Qs

f = 0 for all s. Then f → 0 as ‖(x, y)‖ → ∞.

4.) Let R = [0, 1]× [0, 1] be the unit square. Let E = {(x, y) ∈ R : |x− .5|+ |y − .5| ≤ .5} be the
dimamond shaped region.

a.) Choose a partition G of R consisting of at least nine (9) subrectangles. For your partition
find U(χE ,G) and the of the boundary U(χ∂E ,G).

b.) Quickly describe how you would go about showing that E is a Jordan Region. [You don’t
need to give precise formulas. Only state what conclusions you would expect.]

c.) Find an approximation to V(E) that is makes an error < ε = 4/9 of the actual value.
Prove your estimate. [Hint: think a second!]
5.) Let E ⊆ R2 be a Jordan region. Let

f(x) =

{
3, if x ∈ E◦,
1, if x ∈ E\E◦,

Show that f(x) is integrable on E and fiind
∫
E

f(x) dx.

6.) Let E ⊆ R2 be a Jordan region. Let f : E → R be given by

f(x) =

{
‖x‖, if x ∈ E◦,
3, if x ∈ E\E◦,

Show that f(x) is integrable on E.
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More problems

7. Let F : R3 → R3 be given by F (x, y, z) = (x2 + y2, xz, y3 − z3). Assume that there is an
open set U about P0 = (3, 1, 2) and that V = F (U) is an open set about Q0 = F (P0) on
which F has an inverse function F−1 ∈ C1(V,U). Find D[F−1](Q0).

8. Suppose G : R5 → R3 is given by G(p, q, x, y, z) = (px+ y2, q2z, py− qz+ x). Assume that
there is an open set U around (3, 2) and a C1 function H : U → R3 so that H(3, 2) = (1, 5, 4)
and for all (p, q) ∈ U we have G(p, q,H(p, q)) = (28, 16, 8). Find DH(3, 2).

9. Let R = [a, b] × [c, d] ⊆ R2 be a compact rectangle and f : R → R be continuous. Then
F (y) =

∫ b
a
f(x, y) dx exists and is continuous for all y ∈ [c, d]. Is F (y) differentiable?

10. From first principles, show that B = {(x, y) : x2 + y2 ≤ 1} is a Jordan domain and that
V(B) = π.

11. Let E = [0, 3]× [0, 4] ⊆ R2. Show that f is integrable on E where

f(x, y) =


2, if y = 2x− 1 and x is rational;
0, if y = 2x− 1 and x is irrational;
sin(x2y4), otherwise.

12. Prove if true; give a counterexample if false:

(a) a. Statement. Suppose f : [0, 1]× [0, 1]→ R is integrable. Then F (y) =
∫ 1

0
f(x, y) dx

is a continuous function on [0, 1].

13. Let D ⊆ Rn be a dense set and f : D → Rm be uniformly continuous. Then there is a
uniformly continuous function F : Rn → Rm such that F (x) = f(x) for all x ∈ D.

14. Let R = [0, 1]× [0, 1]. Show that
∫ 1

0

∫ 1

0
f(x, y) dx dy =

∫ 1

0

∫ 1

0
f(x, y) dy ds where

f(x, y) =

x2 sin
(

1√
x2+y2

)
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

15. Let Q = [0, 1]2 and y = (1, 1) . Find
∫
Q

e−x·ydx.

16. Show that f is not integrable on R = [0, 1]× [0, 1], where f(x, y) =

{
1, if y ∈ Q,
x, if y /∈ Q.

17. Evaluate the following integrals

(a) Suppose 0 < a < b, find
∫ b

a

∫ x

0

√
x2 + y2 dy dx

(b) Let E be the trapezoid with vertices (1, 1), (2, 2), (2, 0), (4, 0). Find
∫
E

exp
(
y − x
y + x

)
dA

18. Suppose V ⊆ Rn is an open set and φ : V → Rn is continuously differentiable with ∆φ 6= 0
on V . Prove that for every x0 ∈ V ,

lim
r→0+

V (φ(Br(x0)))
V(Br(x0))

= |∆φ(x0)|.
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Solutions
(1.) Let F : R5 → R2 be given by F = (f1, f2) where

f1(v, w, x, y, z) = v + w2 + x+ y,

f2(v, w, x, y, z) = vy + wz.

Show that there is a neighborhood U ⊆ R3 containing the point (3, 4, 5) and C1 functions G : U →
R2 where G = (g1, g2) so that g1(3, 4, 5) = 1, g2(3, 4, 5) = 2 and for all (x, y, z) ∈ U ,

f1(g1(x, y, z), g2(x, y, z), x, y, z) = 12,
f2(g1(x, y, z), g2(x, y, z), x, y, z) = 14.

Find the total derivative DG(3, 4, 5)(h, j, k).
This is an application of the Implicit Function Theorem which says that if there is enough

differentiability, and if the problem can be solved for the linear approximations given by the
total derivatives, then, at least in a small neighborhood, the nonlinear problem can be solved
as well. The function F : R2+3 → R2 is C1 on R5 such that F (1, 2, 3, 4, 5) = (12, 14) = c.
To solve for v and w in terms of (x, y, z) we need to be able to solve the linearization. If we
put u = (v, w) and x = (x, y, z), we are looking for G : R3 → R2 so that F (G(x),x) = c
and G(3, 4, 5) = (1, 2). Taking Dx gives DuF (G(x),x) ◦ DG(x) + DxF (G(x),x) = 0 which
says that we may solve for the differential DG(x) whenever DuF (G(x),x) is invertible and then
DG(x) = −[DuF (G(x),x)]−1 ◦ DxF (G(x),x). At the center point (3, 4, 5), the matrix of the
transformation is

DuF (G(3, 4, 5), (3, 4, 5)) =

∂f1
∂v

∂f1
∂w

∂f2
∂v

∂f2
∂w


∣∣∣∣∣∣∣∣
x=(3,4,5)

=

1 2w

y z


∣∣∣∣∣∣∣∣
(u,x)=(1,2,3,4,5)

=

1 4

4 5


which is invertible. Hence there is an open set U ⊆ R3 such that (3, 4, 5) ∈ U and a C1 function
G : U → R2 so that G(2, 3, 4) = (1, 2) and F (G(x),x) = c for all x ∈ U . (Thus, we have checked
the differentiability and the solubility of the linearized problem is satisfied. The IFT gives the
existence of a G ∈ C1(U,R2) so that G(2, 3, 4) = (1, 2) and F (G(x),x) = c for all x ∈ U . You
have been given this as a hypothesis. Then take the total derivative of F (G(x),x) = c with
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respect to x and solve for DG(x) at the given point, as above.) By the formula for the differential

DG(3, 4, 5)


h

k

`

 = −[DuF (G(3, 4, 5), (3, 4, 5))]−1 ◦DxF (G(3, 4, 5), (3, 4, 5))


h

k

`



= −


∂f1

∂v
∂f1
w.

∂f2
∂v

∂f2
∂w


∣∣∣∣∣∣∣∣
x=(3,4,5)


−1

∂f1
∂x

∂f1
y.

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z


∣∣∣∣∣∣∣∣
x=(3,4,5)




h

k

`



= −


1 2w

y z


∣∣∣∣∣∣∣∣
(u,x)=(1,2,3,4,5)


−1

1 1 0

0 v w


∣∣∣∣∣∣∣∣
(u,x)=(1,2,3,4,5)




h

k

`



= −

1 4

4 5


−11 1 0

0 1 2



h

k

`

 =
1
11

 5 −4

−4 1


1 1 0

0 1 2



h

k

`



=
1
11

−5 −1 8

4 3 −2



h

k

`

 =
1
11

−5h− k + 8`

4h+ 3k − 2`

 .

2.)Let f(x, y) : [a, b]× [c, d]→ R be a continuously differentiable (C1) function. Let a < b be finite
numbers. Assume that

F (y) =
∫ b

a

f(x, y) dx

exists and is a continuous function for all y ∈ [c, d]. [We showed this in class.] Prove that F is
differentiable and that for all y ∈ [c, d], [Hint: Mean Value Theorem]

F ′(y) =
∫ b

a

∂f

∂y
(x, y) dx.

The method is to verify that the function G(y) =
∫ b
a
∂f
∂y (x, y) dx is the limit of the difference

quotient

lim
h→0

0<h<b−y

F (y + h)− F (y)
h

= G(y).

For simplicity sake, we argue the case that a ≤ y < y + h ≤ b. ( If h < 0 then the upper and
lower limits of integrals would have to be interchanged.) Since F ∈ C1([a, b] × [c, d]) it follows
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that the partial derivative Fy(x, y) is uniformly continuous on [a, b]× [c, d]. Thus, for every ε > 0
there is a δ(ε) > 0 so that if for (x1, y1), (x, y) ∈ [a, b] × [c, d] we have ‖(x1, y1) − (x, y)‖ < δ(ε)
then |fy(x1, y1)− fy(x, y)| < ε/(1 + b− a). Now, as a function of y we have that f is continuous
on [c, d] and differentiable on (c, d), so that we may apply the (one-dimensional) Mean Value
Theorem: for every x ∈ [a, b] and y < y + h ∈ [c, d] there is η(x, y, h) ∈ (y, y + h) so that
f(x, y + h) − f(x, y) = fy(x, η(x, y, h))h. If |h| < δ(ε) then ‖(x, η(x, y, h)) − (x, y)‖ < ‖(x, y +
h)− (x, y)‖ = |h| < δ(ε) so that |fy(x, η(x, y, h))− fy(x, y)| < ε/(1 + b− a). Thus, for arbitrary
ε > 0, if 0 < h < min{δ(ε), 1− y},

∣∣∣∣ 1h [F (y + h)− F (y)]−G(y)
∣∣∣∣ =

∣∣∣∣∣
∫ b

a

1
h

[f(x, y + h)− f(x, y)]− fy(x, y) dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

fy(x, η(x, y, h))− fy(x, y) dx

∣∣∣∣∣ ≤
∫ b

a

|fy(x, η(x, y, h))− fy(x, y)| dx ≤
∫ b

a

ε dx

1 + b− a
< ε.

(3.)Let f(x, y) : R2 → R. Prove if true; give a counterexample if false:
a.) Statement. Suppose one of the partial derivatives, say ∂f

∂x (x, y) exists for all (x, y) ∈ R2.
Then f is integrable on Q = [0, 1]× [0, 1].

FALSE! Let f(x, y) =

{
1, if y ∈ Q,
0, if y /∈ Q.

. Then as f is independent of x it follows that fx(x, y) =

0 for all (x, y). However f is not Riemann integrable. For any subrectangle Ri we have
mi = inf{f(x, y) : (x, y) ∈ Ri} = 0 and Mi = inf{f(x, y) : (x, y) ∈ Ri} = 1. It follows that∫
E
f(x, y) dA = supG L(f,G) = 0 but

∫
E
f(x, y) dA = infG U(f,G) = V(Q) = 1, which are not

equal, thus f is not integrable on Q.
b.) Statement. Suppose f is integrable on the squares Qs = [−s, s] × [−s, s] for all s > 0

and
∫
Qs

f = 0 for all s. Then f → 0 as ‖(x, y)‖ → ∞.

FALSE! Let f(x, y) =

{
1, if xy > 0,
−1, if xy ≤ 0.

be 1 on the first and third quadrants, and −1 oth-

erwise. Then
∫
Qs
f(x, y) dA = 0 for s > 0, but f(x, y) 6→ 0 as ‖(x, y)‖ → ∞. Along f(t, t) = 1

where t > 0 then limt→+∞ f(t, t) = 1 but f(t, 0) = −1 so limt→+∞ f(t, 0) = −1 thus there is no
limit for f at infinity.

4.)Let R = [0, 1] × [0, 1] be the unit square. Let E = {(x, y) ∈ R : |x − .5| + |y − .5| ≤ .5} be the
dimamond shaped region.

a.) Choose a partition G of R consisting of at least nine (9) subrectangles. For your partition
find U(χE ,G) and for the boundary U(χ∂E ,G).

Take a partition with 16 uniform squares. The grid square Ri,j = [ i−1
4 , i4 ] × [ j−1

4 , j4 ], as
i, j = 1, . . . , 4. Then all squares touch Ē. For example the point ( 1

4 ,
1
4 ) ∈ R11∩R12∩R21∩R22∩∂E.

Thus U(χ∂E ,G) = 1. But ∂E ⊆ Ē ⊆ R so U(χE ,G) = 1.
b.)Quickly describe how you would go about showing that E is a Jordan Region. [You don’t

need to give precise formulas. Only state what conclusions you would expect.]
To be a Jordan region, two conditions have to be checked. First E is bounded since Ē ⊆ R =

[0, 1]2. Second, one must also show V(∂E) = 0, i.e.that for every ε > 0 there is a grid Gn for R
so that U(χ∂E ,Gn) < ε. For example, one may choose the uniform grid whose squares have side
lengths 1

2n , (so there is an even number 4n2 squares all together.) The number of squares tn that
touch ∂E grows much slower than 4n2. We can can find tn exactly for this grid. In the quadrant
0 ≤ x, y,≤ 1

2 , the squares on the diagonal and the super and subdiagonals are the only ones that
touch ∂E. Thus all together there are tn = 4(n + 2(n − 1)) = 12n − 8. Hence the number of
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squares times their area gives U(χ∂E ,Gn) = 12n−8
n2 → 0 as n→∞. By choosing n large enough,

U(χ∂E ,Gn) < ε, so ∂E has Jordan Content zero. Thus, E is a Jordan region.
c.)Find an approximation to V(E) that is makes an error < ε = 4/9 of the actual value. Prove

your estimate. [Hint: think a second!]
Using the grid G2 from (a.) we see that Q = R22 ∪R23 ∪R32 ∪R33 ⊆ E ⊆ R. Thus if H is any

grid and K is a common refinement of both H and G2 then Q is the union of several rectangles
from K and

1 = U(χR,H) ≥ U(χE ,H) ≥ U(χE ,K) ≥ V (Q) =
1
4
,

so that 1 ≥ V (E) = infH U(χE ,H) ≥ 1
4 . Thus the average gives an approximation with |V (E)−

5
8 | ≤

3
8 <

4
9 .

5.)Let E ⊆ R2 be a Jordan region. Let

f(x) =

{
3, if x ∈ E◦,
1, if x ∈ E\E◦,

Show that f(x) is integrable on E and fiind
∫
E

f(x) dx.

Let R ⊇ E be a rectangle containing E, and assume that f is extended to be zero off E. A
bounded function is integrable if for every ε > 0 there is a grid G of R so that the upper and lower
Riemann sums satisfy U(f,G) − L(f,G) < ε. We shall use the fact that E is a Jordan Domain
to show this. Choose ε > 0. Since E is a Jordan Domain so V (∂E) = 0, there is a grid G so
that U(χ∂E ,G) < ε

6 . Since V(E) = infH U(χE ,H), there is a grid H so that V(E) ≤ U(χE ,H) <
V(E) + ε

6 . Let K be a common refinement of G and H. Since any rectangle for which Ri ∩ Ē 6= ∅
we have either Ri ∩ ∂E 6= ∅ or Ri ⊆ E◦ but not both. We let I ′ = {i : Ri ∩ ∂E 6= ∅} and
I ′′ = {i : Ri ⊆ E◦}. Observe that 0 ≤ mi = inf{f(x) : x ∈ Ri} ≤ Mi = sup{f(x) : x ∈ Ri} ≤ 3
for all i and mi = Mi = 3 for i ∈ I ′′ because f(x) = 3 for all x ∈ Ri ⊆ E◦. Now, the Riemann
sums satisfy

U(f,K)− L(f,K) =
∑

Ri∩E 6=∅

(Mi −mi)V (Ri) ≤
∑
i∈I′

(Mi −mi)V (Ri) +
∑
i∈I′′

(Mi −mi)V (Ri)

≤ 3
∑
i∈I′

V (Ri) ≤ 3U(χ∂E ,K) ≤ 3U(χ∂E ,G) < 3 · ε
6
< ε.

Thus the function f is integrable. Moreover, since Ri ⊆ E◦ for i ∈ I ′′, S = V
(⋃

i∈I′′ Ri
)
≤

U(χE ,G′) for any G′ so S ≤ V(E). Also, |Mi − 3| ≤ 3.

L(f,K)− ε
2

=
∑

Ri∩Ē 6=∅

mi V (Ri)−
ε

2
=
∑
i∈I′

mi V (Ri)+3
∑
i∈I′′

V (Ri)−
ε

2
≤ 3V (∂E,K)−3· ε

6
+3 V(E)

≤ 3 V(E) ≤ 3U(χE ,K) ≤ 3
∑

Ri∩Ē 6=∅

V (Ri) =
∑
i∈I′

(
(3−Mi) +Mi

)
V (Ri) +

∑
i∈I′′

Mi V (Ri)

≤ 3U(χ∂E,K) + U(f,K) ≤ ε

2
+ U(f,K).

Because ε > 0 was arbitrary,
∫
E
f da = 3 V(E).

(6.)Let E ⊆ R2 be a Jordan region. Let f : E → R be given by

f(x) =

{
‖x‖, if x ∈ E◦,
3, if x ∈ E\E◦,
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Show that f(x) is integrable on E.
Almost the same as the previous problem, so I can do a cut-and-paste job!
Let R ⊇ E be a rectangle containing E, and assume that f is extended to be zero off E. Since

E is bounded, there is 3 ≤ J <∞ so that ‖x‖ ≤ J for all x ∈ E◦. Thus |f(x)| ≤ J all x ∈ Ē. A
bounded function is integrable if for every ε > 0 there is a grid G of R so that the upper and lower
Riemann sums satisfy U(f,G)−L(f,G) < ε. We shall use the fact that E is a Jordan Domain to
show this.

Choose ε > 0. Since E is a Jordan domain so V(∂E) = 0, there is a grid G so that U(χ∂E ,G) <
ε

2J . Note that the function x 7→ ‖x‖ is 1-Lipschitz continuous, thus uniformly continuous. Choose
a fine enough grid H so that diam(R′i) = sup{‖x − y‖ : x, y ∈ R′i} < ε

2V (R) for every R′i, a
rectangle of H. Let K be the common refinement of H and G. Since any rectangle of K for which
Ri∩ Ē 6= ∅ we have either Ri∩∂E 6= ∅ or Ri ⊆ E◦ but not both, we let I ′ = {i : Ri∩ Ē 6= ∅} and
I ′′ = {i : Ri ⊆ E◦}. Observe that 0 ≤ mi = inf{f(x) : x ∈ Ri} ≤ Mi = sup{f(x) : x ∈ Ri} ≤ J
for all i. Also, since f = ‖x‖ is continuous for x ∈ Ri ⊆ E◦ whenever i ∈ I ′′, and since Ri is
compact, by the extreme value theorem, there are ξ, η ∈ Ri so that mi = f(ξ) and Mi = f(η).
But, since f is 1-Lipschitz on Ri, we have Mi−mi = |f(η)−f(ξ)| ≤ ‖η−ξ‖ ≤ diam(Ri) ≤ ε

2V (R) .
Now, since the Riemann sums satisfy

U(f,K)− L(f,K) =
∑

Ri∩Ē 6=∅

(Mi −mi)V (Ri) =
∑
i∈I′

(Mi −mi)V (Ri) +
∑
i∈I′′

(Mi −mi)V (Ri)

≤ J
∑
i∈I′

V (Ri) +
ε

2V (R)

∑
i∈I′′

V (Ri) ≤ JU(χ∂E ,K) +
ε

2V (R)
V (R)

≤ JU(χ∂E ,G) +
ε

2
< ε · ε

2J
+
ε

2
= ε.

Thus the function f is integrable.

(7.) (Slight generalization.) Let F : R3 → R3 be given by F (x, y, z) = (x2 + y2, xz, y3 − z3).
Show that there is an open set U about P0 = (3, 1, 2) so that F is invertible on U and that F (U)
is an open set about Q0 = F (P0) on which F−1 is C1. Find D[F−1](Q0). Find D[F−1](Q) where
Q ∈ F (U).

The function F (x, y, z) polynomial, therefore C1. We check that ∆F (P0) 6= 0 and all of
the conclusions follow from the Inverse Function Theorem. The fact that the linearization was
invertible at the point enables you to conclude the existence of a local inverse function. Thus
there is a neighborhood P0 ∈ U such that V = F (U) is open and there is G ∈ C1(V,R3) which is
the inverse function of F : U → V . (You were given this in the original problem.) Thus in U we
have the equation F (G(x, y, z)) = (x, y, z). Apply the chain rule, and solve for DG at the point.
Thus D(F ◦ G) = DF (P0) ◦DG(Q0) = I so DG(Q0) = (DF (P0))−1. The matrix of DF (P0) is
the Jacobian matrix

DF (P ) =


∂F1
∂x

∂F1
∂y

∂F1
∂z

∂F2
∂x

∂F2
∂y

∂F2
∂z

∂F3
∂x

∂F3
∂y

∂F3
∂z

 =


2x 2y 0

z 0 x

0 3y2 −3z2

 ; DF (P0) =


6 2 0

2 0 3

0 3 −12

 ;

thus ∆F (P0) = det(DFx(P0)) = −6 6= 0. Finally, for Q near (10, 6,−7) = Q0 = F (P0), so
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DF−1(Q) =

[DF (F−1(Q))]−1 =
1

6yz3 − 6x2y2


−3xy2 3z3 3zy2

6yz2 −6xz2 −6xy2

2xy −2x2 −2yz

 ; DF−1(Q0) =


3
2 −4 −1

−4 12 3

−1 3 2
3


where (x, y, z) = F−1(Q).

(8.) (Slight Generalization.) Suppose G : R5 → R3 is given by G(p, q, x, y, z) = (px+y2, q2z, py−
qz + x). Show that there is an open set U around T0 = (3, 2) and a C1 function H : U → R3 so
that H(3, 2) = (1, 5, 4) = X0 and for all (p, q) ∈ U we have G(p, q,H(p, q)) = (28, 16, 8). Find
DH(3, 2). Find DH(p, q).

The function G is polynomial so C1. We have to check that the linearization is soluble at
(3, 2, 1, 5, 4). This follows if the DxG part of the Jacobian matrix is invertible.

DxG =


∂G1
∂x

∂G1
∂y

∂G1
∂z

∂G2
∂x

∂G2
∂y

∂G2
∂z

∂G3
∂x

∂G3
∂y

∂G3
∂z

 =


p 2y 0

0 0 q2

1 p −q

 ; DxG(T0, X0) =


3 10 0

0 0 4

1 3 −2


which is invertible since its determinant is 4. The Implicit Function Theorem applies. There is an
open set T0 ∈ U ⊆ R2 and H ∈ C1(U,R3) satisfying F (p, q,H(p, q)) = (28, 16, 8) for all (p, q) ∈ U .
(You were given this in the original problem.) Find the total derivative of H by differentiating the
equation using the chain rule. Think of H : U → R5 is given by H(p, q) = (p, q,H(p, q)), and then
differentiate G ◦ H = const. using the chain rule. The total derivative of G matrix has columns
associated to t = (p, q) and columns associated to x = (x, y, z) drivatives, DG = (DtG,DxG).
To find the total derivative of H we need the other part of the Jacobian

DtG =


∂G1
∂p

∂G1
∂q

∂G2
∂p

∂G2
∂q

∂G3
∂p

∂G3
∂q

 =


x 0

0 2qz

y −z

 ; DtG(T0, X0) =


1 0

0 16

5 −4

 ; DH(T0) =


−3 −16

− 25
4 −25

−10 48


since total derivative of implicit function DH(T ) = −[DxG(T,H(T ))]−1DtG(T,H(T )) =

− 1
∆


−pq2 q2 0

2yq −pq 2y − p2

2yq2 −pq2 0




x 0

0 2qz

y −z

 = − 1
∆


−xpq2 2q3z

2xyq + 2y2 − yp2 p2z − 2pq2z − 2yz

2xyq2 −2pq3z


where ∆ = q2(2y − p2) and (x, y, z) = H(p, q).
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(9.)Let R = [a, b] × [c, d] ⊆ R2 be a compact rectangle and f : R → R be continuous. Then
F (y) =

∫ b
a
f(x, y) dx exists and is continuous for all y ∈ [c, d]. Is F (y) differentiable?

Since f(x, y) is continuous on the compact set R, we may suppose that f is uniformly contin-
uous: for any ε > 0 there is a δ(ε) > 0 so that for any (x, y), (x0, y0) ∈ R, if ‖(x, y)− (x0, y0)‖ < δ
then |f(x)− f(y)| < ε

1+b−a . Choose ε > 0. Suppose c ≤ y < y0 ≤ d such that |y − y0| < δ. Then
‖(x, y)− (x, y0)‖ < δ(ε) and so |f(x, y)− f(x, y0)| < ε

1+b−a for all x. Estimating F ,

|F (y)− F (y0)| =

∣∣∣∣∣
∫ b

a

[f(x, y)− f(x, y0)] dx

∣∣∣∣∣ ≤
∫ b

a

|f(x, y)− f(x, y0)| dx ≤
∫ b

a

ε dx

1 + b− a
< ε,

thus, F is continuous on [c, d].
But if there is no differentiability of f with respect to y we can’t expect it for F . For example,

if f(x, y) = |y| on [−2, 2]× [−1, 1] then F (y) = 4|y| is not differentiable on y ∈ [−2, 2].

(10.)From first principles, show that B = {(x, y) : x2 + y2 ≤ 1} is a Jordan domain and that
V(B) = π.

Let R = [−1, 1] × [−1, 1]. Consider the uniform grid Gn whose squares have sides 1
n so

there are a total of 4n2 squares in the grid. The diameter of a square Ri of this grid is at
most the length of the diagonal

√
2
n < 2

n . Let us count the number of squares that touch the
circle ∂B. If Ri ∩ ∂B 6= ∅, then Ri ⊆ An where An = {(x, y) : 1 − 2

n <
√
x2 + y2 < 1 + 2

n}
is the annulus of width 4

n straddling the unit circle. A quickie argument goes as follows (but
is circular, since it presumes the area of a circle!) Since Ri ∩ ∂B 6= ∅ then Ri ⊆ An so that
U(χ∂B,Gn) = V

(⋃
Ri∩∂B6=∅Ri

)
≤ V(An) = π

(
(1 + 2

n )2 − (1− 2
n )2
)

= 8π
n → 0 as n→∞.

To make an more honest argument that doesn’t beg the question, let’s estimate the number
of Ri’s that touch arc ∂B in y ≥ |x|. The function y =

√
1− x2 has slope bounded by |y′| ≤ 1

over the interval |x| ≤ 1√
2
. It follows that in any vertical column of squares, the largest number of

squares for |x| < 1√
2

that can touch the segment is three. As there are 2n squares between − 1√
2

and 1√
2
, then there are at most 3 · 2n = 6n squares that covers one of the arcs (of course there

are fewer, as the ones near ±1 miss the arc altogether.) The left and right arcs can be counted
in the same way after reversing the roles of x and y. As there are four arcs in ∂B, so there are
at most 4 · 6n = 24n that touch ∂B. it follows that U(χ∂B,Gn) ≤ 24

n → 0 as n→∞, so that ∂B
has content zero and B is a Jordan region.

To compute the volume, let’s compute the volume of Qε = {(x, y) : 0 ≤ x, 0 ≤ y; ε2 ≤ x2+y2 ≤
1} using a change of variables. Then V(B) = limε→0 4 V(Qε) = π. Use the polar coordinates
diffeomorphism. Let (x, y) = φ(r, θ) = (r cos θ, r sin θ) for the region Rε = {(r, θ) : ε ≤ r ≤ 1, 0 ≤

θ ≤ π
4 }. Then the Jacobian matrix Dφ(r, θ) =

cos θ −r sin θ

sin θ r cos θ

 so ∆φ = det(Dφ) = r. Thus

V(Qε) =
∫
Qε

dA(x, y) =
∫
φ(Rε)

dA(x, y) =
∫
Rε

r dA(r, θ) =
∫ 1

ε

∫ π
4

0

r dθ dr =
π

4
(
1− ε2

)
.

(11.)Let E = [0, 3]× [0, 4] ⊆ R2. Show that f is integrable on E where

f(x, y) =


2, if y = 2x− 1 and x is rational;
0, if y = 2x− 1 and x is irrational;
sin(x2y4), otherwise.

The function is continuous on the compact aligned rectangle E except possibly along the
diagonal y = 2x− 1 which has content zero in E, thus f is integrable on E by a theorem.
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Let us give another argument using the fact that continuous functions are integrable. The
function g(x, y) = sin(x2y4) is continuous on R = [0, 3] × [0, 4] and thus is integrable. Then
f(x, y) = g(x, y) + h(x, y) is integrable provided that h(x, y) is integtrable, where

f(x, y) =


2− sin(x2y4), if y = 2x− 1 and x is rational;
− sin(x2y4), if y = 2x− 1 and x is irrational;
0, otherwise.

h(x, y) is nonzero on a content zero set, and thus is integrable. To see this more clearly, observe
that |h(x, y)| ≤ 3. We show that for all ε > 0 there is a grid Gn ofR so that U(h,Gn)−L(h,Gn) < ε.
Let Gn be the grid consisting of squares with 6n horizontally and 8n vertically. The squares have
width and height equal to 1

2n . The line L given by y = 2x − 1 passes through the diagonal of
vertical pairs. There are 4n such pairs between 0.5 ≤ x ≤ 2.5. In addition, there are 4n more
squares that touch the line from above and 4n more from below. All together, 2·4n+4n+4n = 16n
squares. Let I ′ denote the indices of these squares. Let I ′′ be the rest of the indices. For i ∈ I ′
we have −3 ≤ mi ≤ M1 ≤ 3 since |h| ≤ 3 for all of R. But for i ∈ I ′′ we have mi = Mi = 0
because such Ri ⊆ R\L. Thus, the difference

U(h,Gn)− L(h,Gn) =
∑
Ri⊆R

(Mi −mi)V (Ri)

=
∑
i∈I′

(Mi −mi)V (Ri) +
∑
i∈I′′

(Mi −mi)V (Ri)

≤ 6
∑
i∈I′

V (Ri) ≤
6 · 16n

4n2

tends to zero as n→∞.

(12.)Prove if true; give a counterexample if false:
Statement. Suppose f : [0, 1] × [0, 1] → R is integrable. Then F (y) =

∫ 1

0
f(x, y) dx is a

continuous function on [0, 1].
FALSE! Let

f(x, y) =

{
1, if y ≥ 1

2 ,
0, otherwise.

Then f(x, y) is integrable because it is the characteristic function of the Jordan region [0, 1]×[ 1
2 , 1]

(a rectangle!) Then F (y) = f(y), which is not continuous.

(13.) Let D ⊆ Rn be a dense set and f : D → Rm be uniformly continuous. Then there is a
uniformly continuous function F : Rn → Rm such that F (x) = f(x) for all x ∈ D.

This is like the homework problem few completed. People left out the (gory bookkeeping)
details. First we define a function F (x) for all x ∈ Rn. Choose x ∈ Rn. If x ∈ D then let
F (x) = f(x). If x /∈ D, we construct a sequence {xn} ⊆ D such that xn → x and define
F (x) = limn→∞ f(xn).

To see there is such a sequence, since D is dense, for every n ≥ 1 there is an xn ∈ B1/n(x)∩D.
Thus {xn} is a Cauchy sequence: for every δ > 0 there is an N ∈ N so that k, ` ≥ N implies
that ‖xk − x`‖ < δ. However, f is uniformly continuous, so for every ε > 0 there is a δ > 0 so
that ‖y − z‖ < δ for some y, z ∈ D implies ‖f(y) − f(z)‖ < ε. Thus taking N corresponding
to this δ, for any k, ` ≥ N , by taking y = xk and z = x` we have ‖xk − x`‖ < δ therefore
‖f(xn) − f(x`)‖ < ε. Thus we have shown that {f(xn)} is a Cauchy sequence in Rm. Let
F (x) = limn→∞ f(xn). Note that this construction works equally well for x ∈ D as well as for
x /∈ D. This function may have depended on the choice of sequence converging to x. Suppose
that {yn} is another sequence in D converging to x. Then {f(yk)} is also a Cauchy sequences in
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Rm so let L = limn→∞ f(yn) be its limit. To show F (x) = L we choose η > 0. By convergence,
there are N1, N2 ∈ N so that ‖f(yn) − F (x)‖ < η and ‖f(yk) − L‖ < η whenever n ≥ N1 and
k ≥ N2. By uniform continuity, there is a δ > 0 so that if ‖z1 − z2‖ < δ for some zi ∈ D we
have ‖f(z1)− f(z2)‖ < η. But xn → x as n→∞ so there is an N3 ∈ N so that n ≥ N3 implies
‖x − xn‖ < 1

2δ. Similarly yk → x as k → ∞ so there is an N4 ∈ N so that k ≥ N4 implies
‖x − xn‖ < 1

2δ. Hence ‖xn − yk‖ ≤ ‖xn − x + x − yk‖ ≤ ‖xn − x‖ + ‖x − yk‖ < 1
2δ + 1

2δ.
By uniform continuity, ‖f(xn) − f(yk)‖ < η. Putting it all together, if n ≥ max{N1, N3} and
k ≥ max{N2, N4} then

‖F (x)− L‖ =‖F (x)− f(xn) + f(xn)− f(yk) + f(yk)− L‖
≤‖F (x)− f(xn)‖+ ‖f(xn)− f(yk)‖+ ‖f(yk)− L‖
<η + η + η.

Since η was arbitrary, F (x) = L. Thus the limit does not depend on the sequence yk → x and
F (x) is a well defined function of x.

Second, F (x) extends f . Indeed, if x ∈ D then for any η > 0 there is a δ > 0 so that
‖f(x) − f(xn)‖ < η whenever ‖x − xn‖ < δ and x, xn ∈ D. However, since xn → x there is an
N ∈ N so that n ≥ N implies ‖xn − x‖ < δ. Thus for n ≥ N we have ‖f(x) − f(xn)‖ < η.
We have shown that f(xn) → f(x) but since the limit is unique, F (x) = f(x). (Alternatively,
let yk = x ∈ D be the constant sequence, yk → x. Hence f(yk) → f(x) but f(x) = F (x) by
uniqueness.)

Finally we show that F (x) is uniformly continuous. Pick ε > 0. By uniform continuity of f
there is a δ > 0 so that ‖f(xn) − f(yk)‖ < 1

3ε whenever xn, yk ∈ D and ‖yk − xn‖ < δ. Let
δ1 = 1

3δ. We show that whenever x, y ∈ Rn such that ‖x − y‖ < δ1 then ‖F (x) − F (y)‖ < ε
hence F is uniformly continuous on Rn. Pick x, y ∈ Rn so that ‖x − y‖ < δ1. Pick sequences
from D so that xn → x and yk → y as n, k → ∞. Thus for some n, k sufficiently large, we
have ‖F (x) − f(xn)‖ < 1

3ε, ‖xn − x‖ <
1
3δ, ‖F (y) − f(yn)‖ < 1

3ε and ‖yk − y‖ < 1
3δ. Thus

‖xn− yk‖ = ‖xn−x+x− y+ y− yk‖ ≤ ‖xn−x‖+ ‖x− y‖+ ‖y− yk‖ < 1
3δ+ δ1 + 1

3δ = δ. Hence
‖f(xn)−f(yk)‖ < 1

3ε. Finally, ‖F (x)−F (y)‖ = ‖F (x)−f(xn)+f(xn)−f(yk)+f(yk)−F (y)‖ ≤
‖F (x)− f(xn)‖+ ‖f(xn)− f(yk)‖+ ‖f(yk)− F (y)‖ < 1

3ε+ 1
3ε+ 1

3ε = ε and we are done.

(14.)Let R = [0, 1]× [0, 1]. Show that
∫ 1

0

∫ 1

0
f(x, y) dx dy =

∫ 1

0

∫ 1

0
f(x, y) dy ds where

f(x, y) =

x2 sin
(

1√
x2+y2

)
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

The function f(x, y) is continuous on R, hence it is integrable on R. The continuity is clear
away from (0, 0) because the function is a composition of nonzero continuous functions and the
denominator avoids zero. At (0, 0) the function is continuous because |f(x, y)| ≤ x2 + y2 → 0 as
(x, y) → (0, 0). Therefore also, for each x ∈ [0, 1], the function f(x, ·) is integrable on [0, 1] and
for each y ∈ [0, 1], the function f(·, y) is integrable on [0, 1]. Hence Fubini’s Theorem applies.
It provides that both iterated integrals agree with the two dimensional integral, answering the
question: ∫ 1

0

(∫ 1

0

f(x, y) dx
)
dy =

∫
R

f(x, y) dA =
∫ 1

0

(∫ 1

0

f(x, y) dy
)
dx
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(15.)Let Q = [0, 1]2 and y = (1, 1) . Find
∫
Q

e−x·ydx.

f(x1, x2) = e−x·y = e−x1−x2 is a continuous function on the rectangleQ, therefore is integrable
on Q and for each z ∈ [0, 1], the functions f(z, ·) and f(·, z) are integrable on [0, 1]. Thus Fubini’s
Theorem applies and we can evaluate the integral using iterated integrals. Thus∫

Q

e−x·ydA =
∫ 1

0

∫ 1

0

e−x1e−x2 dx1 dx2 = (1− e−1)
∫ 1

0

e−x2dx2 = (1− e−1)2.

(16.)Show that f is not integrable on R = [0, 1]× [0, 1], where

f(x, y) =

{
1, if y ∈ Q,
x, if y /∈ Q.

We show that for all partitions G of R, the upper and lower sums stay apart. Indeed, let H be
the partition {R′1, R′2} where R′1 = [0, 0.5]× [0, 1] and R′2 = [0.5, 1]× [0, 1]. Choose a partition G
and let K be any common refinement of G and H. For any nondegenerate rectangle Ri of K such
that Ri ⊆ R′1 we have Mi = 1 because the rationals are dense in y so Ri contain both rational
and irrational points. Also mi ≤ 0.5 because x ≤ 0.5 on R′1. It follows that

U(f,G)− L(f,G) ≥ U(f,K)− L(f,K)

=
∑
Ri⊆R

(Mi −mi)V (Ri)

≥ (1− 0.5)
∑

Ri⊆R′1

V (Ri)

= 0.5 V(R′1) = 0.25,

so the difference cannot approach zero which it must do for f to be integrable.

(17)Evaluate the following integrals

(a.)Suppose 0 < a < b, find I =
∫ b

a

∫ x

0

√
x2 + y2 dy dx

Let Q = [a, b]× [0, 1]. Consider the transformation φ(u, v) = (u, uv) so φ(Q) = {(x, y) ∈ R2 :

a ≤ x ≤ b, 0 ≤ y ≤ x}. Dφ(u, v) =

1 0

v u

 so ∆φ = det(Dφ) = u. The change of variables

formula is

I =
∫
φ(Q)

√
x2 + y2 dx dy =

∫
Q

√
u2 + u2v2 u du dv

=
∫ b

a

∫ 1

0

u2
√

1 + v2 dv du =
b3 − a3

3

(
1√
2

+ log(1 +
√

2)
)
.

(b.)Let E be the trapezoid with vertices (1, 1), (2, 2), (2, 0), (4, 0). Find J =
∫
E

exp
(
y − x
y + x

)
dA

Let the diffeomorphism be defined by φ(s, t) = ( 1
2s(1 + t), 1

2s(1 − t)). Let D = [2, 4] × [0, 1].

Then φ(D) = E. Also, Dφ(s, t) = 1
2

1 + t s

1− t −s

 so |∆φ| = |det(Dφ)| = s
2 . thus, by the change

12



of variables formula J =
∫
φ(D)

f(z) dV (z) =
∫
D
f(φ(σ)) |∆φ(σ)| dV (σ) so

J =
∫
φ(D)

exp
(
y − x
y + x

)
dx dy =

1
2

∫
D

e−ts ds dt =
1
2

∫ 4

2

∫ 1

0

se−tdt ds = 3(1− e−1).

(18.)Suppose V ⊆ Rn is an open set and φ : V → Rn is continuously differentiable with ∆φ 6= 0
on V . Prove that for every x0 ∈ V ,

lim
r→0+

V (φ(Br(x0)))
V(Br(x0))

= |∆φ(x0)|.

We are given that φ is continuously differentiable in a neighborhood of zero. Thus for 0 < r
small so that Br(0) ⊆ U we have Dφ(x) is continuous in Br(0) as it is the determinant of the
continuous matrix function Dφ(x). By continuity, η(r) = sup{|∆φ(x)−∆φ(0)| : x ∈ Br(0)} → 0
as r → 0. Using the change of variables formula,

∣∣∣∣V (φ(Br(x0)))
V(Br(x0))

− |∆φ(0)|
∣∣∣∣ =

∣∣∣∣∣
∫
φ(Br(x0))

dV (y)∫
Br(x0)

dV (x)
− |∆φ(0)|

∣∣∣∣∣ =

∣∣∣∫Br(x0)
(|∆φ(x)| − |∆φ(0)|) dV (x)

∣∣∣∫
Br(x0)

dV (x)

≤

∫
Br(x0)

∣∣∣|∆φ(x)| − |∆φ(0)|
∣∣∣ dV (x)∫

Br(x0)
dV (x)

≤

∫
Br(x0)

η(r) dV (x)∫
Br(x0)

dV (x)
= η(r)

which tends to zero as r → 0.
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