- 18. $E[X^{-1}] = \sum_{1}^{\infty} k^{-1}q^{k-1}p = (p/q)\sum_{1}^{\infty} k^{-1}q^k = -(p/q)\ln p$ from 5(iii). The book gives $(q/p)\ln p$, which is certainly wrong because it is negative.
- 25. Let N be the number of eggs and X be the number that develop. Then $P(X = k) = \sum_{n \geq k} P(N = n) P(X = k \mid N = n) = \sum_{n \geq k} (e^{-\mu} \mu^n / n!) \binom{n}{k} p^k (1 p)^{n-k} = (e^{-\mu} (\mu p)^k / k!) \sum_{n \geq k} (\mu (1-p))^{n-k} / (n-k)! = (e^{-\mu} (\mu p)^k / k!) e^{\mu (1-p)} = e^{-\mu p} (\mu p)^k / k!$, which is Poisson (μp) .
- 27. (a) *n*th tomato is *k*th defective is a negative binomial probability, namely $\binom{n-1}{k-1}p^k(1-p)^{n-k}$.
 - (b) Same as (a) with pr in place of p.
- (c) $P(X = k) = P(k \text{ defectives among first } n \mid n+1 \text{ is first rejected}).$ Write this as the ratio of two probabilities. The numerator probability is $P(k \mid k)$

defectives among first n, no rejected among first n, and n+1 is rejected) = $\binom{n}{0,k,n-k}(pr)^0(p(1-r))^k(1-p)^{n-k}pr$. Denominator probability is geometric, $(1-pr)^npr$. Result is

$$\binom{n}{k} \left(\frac{p(1-r)}{1-pr}\right)^k \left(\frac{1-p}{1-pr}\right)^{n-k},$$

which is binomial(n, p(1-r)/(1-pr)).

- 29. (a) p^n .
- (b) $p_n = p^{n-1}(1-p)$.
- (c) Mean of a geometric: 1/(1-p).