
5010 solutions, Assignment 7. Chapter 4: 30, 33, 35, 40, 42, 45. Chapter 5:
2, 14, 15.

30. (a) Condition on whether day n− 1 was wet or fine.

un = un−1p + (1− un−1)p′ = (p− p′)un−1 + p′, n ≥ 2.

We can iterate to get

un = (p− p′)un−1 + p′ = (p− p′)[(p− p′)un−2 + p′] + p′ = (p− p′)2un−2 + (p− p′)p′ + p′

= (p− p′)2[(p− p′)un−3 + p′] + (p− p′)p′ + p′ = (p− p′)3un−3 + (p− p′)2p′ + (p− p′)p′ + p′

...

= (p− p′)nu0 +
n−1∑
k=0

(p− p′)kp′ →
∞∑

k=0

(p− p′)kp′ =
p′

1− (p− p′)
.

(b) This is a geometric random variable with parameter 1− p (i.e., it is the
number of days until the first success, where success means a wet day), hence
the mean is 1/(1− p).

(c) The situation is like this: (f, today)ff. . . fwf ff. . . fwf ff. . . fwf . . . ff. . . fww.
Each ff. . . fwf requires 1/(1−p)+1 days on average by part (b). The number of
such patterns has a geometric(1 − p′) distribution, which has mean 1/(1 − p′).
The product is (

1
1− p

+ 1
)

1
1− p′

=
2− p

(1− p)(1− p′)
.

33. (a) Let X1 be her profit from game 1 and X2 be her profit from game
2. The P (X1 = a) = 0.4 and P (X1 = −a) = 0.6. Similarly, P (X1 = b) = 0.4
and P (X1 = −b) = 0.6. Then E[X1 + X2] = E[X1] + E[X2] = a(0.4 − 0.6) +
b(0.4− 0.6) = (a + b)(−0.2) = −0.2.

(b) Now P (X1 = b) = ap and P (X1 = −b) = 1 − ap, so E[X1 + X2] =
E[X1] + E[X2] = a(0.4 − 0.6) + b(ap − (1 − ap)) = −0.2a + 2bap − b. Since
b = 1 − a, this equals f(a) = −0.2a + (2ap − 1)(1 − a). This function is
maximized at a critical point, i.e., 0 = f ′(a) = −0.2 − (2ap − 1) + 2p(1 − a).
Solving, we get a = (−0.2 + 1 + 2p)/(2p + 2p) = 0.5 + 0.2/p.

35. (a) P (X = r) = P (first k − 1 + r oysters contain k − 1 pearls, (k + r)th
oyster contains kth pearl) =

(
k−1+r

k−1

)
pk(1 − p)r. Sum over r ≥ 0 and use the

negative binomial theorem (page 22) to get

∞∑
r=0

(
k − 1 + r

k − 1

)
pk(1− p)r = pkp−k = 1.

(b) Mean is

∞∑
r=0

(
k − 1 + r

k − 1

)
rpk(1− p)r =

∞∑
r=1

(k − 1 + r)r

r!
rpk(1− p)r

1



=
∞∑

r=1

(k − 1 + r)r−1

(r − 1)!
kpk(1− p)r =

∞∑
r=1

(
k + r − 1

r − 1

)
kpk(1− p)r

=
∞∑

r=0

(
k + r

r

)
kpk(1− p)r+1 = kpk(1− p)p−(k+1) = k(p−1 − 1).

The variance can be found in the same way, but, as we will soon see, there are
much simpler methods to find the mean and variance.

(c)
(
k−1+r

k−1

)
pk(1 − p)r =

(
k−1+r

r

)
(1 − λ/k)k(λ/k)r → e−λλr/r!, the Poisson

distribution.

40. P (X ≥ a + 1) = P (etX ≥ et(a+1)) ≤ E[etX ]e−t(a+1). Now the mgf of
the geometric distribution is E[etX ] =

∑∞
1 etnqn−1p = pet/(1− qet), so we get

P (X ≥ a + 1) ≤ pe−ta/(1 − qet). Since this is valid for every t, we want to
choose t to minimize this upper bound. By taking the derivative, we find that
the minimum is at qet = a/(a + 1), hence pe−ta = p(q(a + 1)/a)a, and we find
that P (X ≥ a+1) ≤ (a+1)p(q(a+1)/a)a. Now the exact value of P (X ≥ a+1)
is qa, so our bound exceeds it by a factor of (a + 1)p(1 + 1/a)a.

42. (a) P (|X−µ| ≤ hσ) = 1−P (|X−µ| > hσ) = 1−P ((X−µ)2 > h2σ2) ≥
1− σ2/(h2σ2) = 1− 1/h2.

(b) Denote m by Sn, which looks more like a random variable. In fact Sn

is binomial(n, 1/2), so the mean and variance of Sn/n are 1/2 and 1/(4n). If
n ≥ 100, then P (0.4 ≤ Sn/n ≤ 0.6) ≥ P (|Sn/n − 0.5| ≤ h/(2

√
n)) ≥ 1 − 1/h2,

provided 0.1 ≥ h/(2
√

n), and this holds for h = 2 since n ≥ 100. The result
follows.

(c) This is P (Sn ∈ {49, 50, 51}) =
∑51

k=49

(
100
k

)
2−100, which can be estimated

by Stirling’s formula.

45. Let the probabilities of the three faces be p1 = 1/2, p2 = 1/3, and
p3 = 1/6. Let X1 be the number of rolls to get outcome 1, and similarly for X2

and X3. Let X = max(X1, X2, X3). Then, by Example 8.19,

E[X] =
1
p1

+
1
p2

+
1
p3
− 1

p1 + p2
− 1

p1 + p3
− 1

p2 + p3
+

1
p1 + p2 + p3

= 2 + 3 + 6− (6/5 + 3/2 + 2) + 1 = 7.3.

There must be a way of getting this using first principles. Any suggestions?

2. (a) P (X > Y ) = 0.
(b) P (X ≥ Y ) = f(2, 2) = 1/16.
(c) P (X + Y is odd) = f(1, 2) + f(1, 4) + f(2, 3) = 1/8 + 1/4 + 1/8 = 1/2.
(d) P (X − Y ≤ 1) = 1.

14. (a) 1 =
∑

(i,j) 6=(0,0) θ|i|θ|j| = (1 + 2θ/(1 − θ))2 − 1. This works for
θ = (

√
2− 1)/(

√
2 + 1) = (

√
2− 1)2 = 3− 2

√
2.

(b) The (0, 0) term is 1, so this case is impossible unless θ = 0 and we
interpret 00 = 1.
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(c) 1 =
∑

0≤i<j θi+j+2 = θ2
∑∞

i=0

∑∞
j=i+1 θiθj = θ2

∑∞
i=0 θ2i+1/(1 − θ) =

θ3/[(1 − θ)2(1 + θ). So the question is, does there exist a positive solution
to θ3 = (1 − θ)2(1 + θ)? This reduces to the quadratic θ2 + θ − 1 = 0, so
θ = (−1 +

√
5)/2 works.

(d) 1 =
∑∞

i=0

∑∞
j=0 θi+j+1 = θ/(1 − θ)2, so we need (1 − θ)2 = θ, and

θ = (3−
√

5)/2 works.
(e) 1 =

∑
j≥1

∑c
i=1(i

j − (i− 1)j)α(β/c)j =
∑

j≥1 cjα(β/c)j =
∑

j≥1 αβj =
αβ/(1− β), which requires αβ/(1− β) = 1.

(f) 1 =
∑

1≤i≤j α(in− (i−1)n)j−n−2 = α
∑

j≥1

∑j
i=1(i

n− (i−1)n)j−n−2 =
α

∑
j≥1 jnj−n−2 = α

∑
j≥1 j−2 = απ2/6, so we need α = 6/π2. Here we are

using the formula on page 23.
Independence holds only in case (c).

15. (a) By symmetry, both marginals are the same. At i = 0, we get
f(0) =

∑
j 6=0 θ|j| = 2θ/(1− θ). At i 6= 0, we get f(i) = θ|i|(1 + 2θ/(1− θ)).

(c) The marginal of X is fX(i) =
∑∞

j=i+1 θi+j+2 = θ2i+3/(1 − θ) for i ≥ 0.
The marginal of Y is fY (j) =

∑j−1
i=0 θi+j+2 = θj+2(1− θj)/(1− θ) for j ≥ 1.

(d) By symmetry, both marginals are the same. For i ≥ 0, f(i) =
∑

j≥0 θi+j+1 =
θi+1/(1− θ).

(e) The marginal of X is fX(i) =
∑

j≥1(i
j− (i−1)j)α(β/c)j = α(iβ/c)/(1−

iβ/c)− α((i− 1)β/c)/(1− (i− 1)β/c) for i = 1, 2, . . . , c. The marginal of Y is
fY (j) =

∑c
i=1(i

j − (i− 1)j)α(β/c)j = αβj for j ≥ 1.
(f) The marginal of X is fX(i) =

∑
j≥i α(in − (i− 1)n)j−n−2 = α(in − (i−

1)n)
∑

j≥i j−n−2 for i ≥ 1, which cannot easily be simplified. The marginal of
Y is fY (j) =

∑j
i=1 α(in − (i− 1)n)j−n−2 = αj−2 for j ≥ 1.
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