151[1] A box contains 13 sound grapefruit and three that are rotten. You pick four at random.

(a) Describe the sample space.

Math 5010 § 1. Treibergs

(b) Let X be the number of sound grapefruit you pick. Find $f_X(x)$ and $E(X)$.

(a.) This is an example of a hypergeometric random variable because the four grapefruit are drawn without replacement. Thus the sample space Ω is all combinations of the $13 + 3$ grapefruit taken four at a time. In other words, it is the collection of subsets of size four from all 16 grapefruit. Thus $|\Omega| = \binom{16}{4}$.

(b.) If X is the number of sound grapefruit among those you pick, then $D = X(\Omega) =$ $\{1, 2, 3, 4\}$ are the values taken by X. Since the number of rotten grapefruit in my selection is at most the number of rotten grapefruit in the box, $4 - x \leq 3$, we must have $x \geq 1$. The number of combinations with x sound grapefruit and $4 - x$ rotten ones is the number of ways of choosing a subset of size x from 13 times the number of ways of choosing the remaining $4 - x$ from the 3 rotten ones. Thus if $x \in D$,

$$
f_X(x) = \frac{\binom{13}{x}\binom{3}{4-x}}{\binom{16}{4}},
$$

and $f_X(x) = 0$ if $x \notin D$. Thus

$$
f_X(1) = \frac{\binom{13}{1}\binom{3}{3}}{\binom{16}{4}} = \frac{1}{140}, \qquad f_X(2) = \frac{\binom{13}{2}\binom{3}{2}}{\binom{16}{4}} = \frac{18}{140},
$$

$$
f_X(3) = \frac{\binom{13}{3}\binom{3}{1}}{\binom{16}{4}} = \frac{66}{140}, \qquad f_X(4) = \frac{\binom{13}{4}\binom{3}{0}}{\binom{16}{4}} = \frac{55}{140}.
$$

It follows that the expectation

$$
\mathbf{E}(X) = \sum_{i=1}^{4} if_X(i)
$$

=
$$
\frac{1 \cdot 1 + 2 \cdot 18 + 3 \cdot 66 + 4 \cdot 55}{140} = \frac{1 + 36 + 198 + 220}{140} = \frac{455}{140} = \frac{13}{4}.
$$

A. Roll four dice. Let X be the number of sixes. Find Ω , D, $f_X(x)$, $F_X(x)$ and $\mathbf{E}(X)$. Graph $f_X(x)$ and $F_X(x)$.

 $X \sim \text{binom}(n, p)$ is distributed according to a binomial distribution. The $n = 4$ rolls of the dice are assumed independent and the probability of success, that is of rolling a six, is $p = \mathbf{P}(S) = \frac{1}{6}$. The sample space is the record of four rolls

$$
\Omega = \{(x_1, x_2, x_3, x_4): x_i \in \{S, F\} \text{ for all } i.\}.
$$

Alternately, the sample space could be the four-tuple of numbers rolled. $D = X(\Omega) =$ $\{0, 1, 2, 3, 4\}$ is the set of possible values of the random variable. For $x \in D$, the probability of x sixes is the number of ways to get x sixes in four rolls times the probability of getting a particular sequence of x sixes and $4 - x$ non-sixes

$$
f_X(x) = \binom{4}{x} p^x q^{4-x}
$$

\boldsymbol{x}	$f_X(x)$	$F_X(x)$
θ	$\binom{4}{0}$ $\left(\frac{1}{6}\right)^0$ $\left(\frac{5}{6}\right)^4$ = $\frac{5^4}{6^4}$ = $\frac{625}{1296}$	$\frac{625}{1296}$
	$\binom{4}{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{3}=\frac{4\cdot5^{3}}{6^{4}}=\frac{500}{1296}$	$\frac{625+500}{1296} = \frac{1125}{1296}$
$\overline{2}$	$\binom{4}{2}\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^2 = \frac{6\cdot 5^2}{6^4} = \frac{150}{1296}$	$\frac{625+500+150}{1296} = \frac{1275}{1296}$
3	$\binom{4}{3}\left(\frac{1}{6}\right)^3\left(\frac{5}{6}\right)^1=\frac{4\cdot 5}{6^4}=\frac{20}{1296}$	$\frac{625+500+150+20}{1296} = \frac{1295}{1296}$
$\overline{4}$	$\binom{4}{4}\left(\frac{1}{6}\right)^4\left(\frac{5}{6}\right)^0=\frac{1}{6^4}=\frac{1}{1296}$	$\frac{625+500+150+20+1}{1296}=1$

Figure 1: Table of p.d.f and c.d.f for $x \in D$.

and $f_X(x) = 0$ if $x \notin D$. Values are given in Figure 1. The cumulative distribution function for $x \in D$ is given by

$$
F_X(x) = \sum_{j \in D \text{ and } j \leq x} f_X(j) = \sum_{j=0}^x f_X(j).
$$

Note that for any real x, $F_X(x) = 0$ if $x < 0$, $F_X(x) = F_X(\lfloor x \rfloor)$ if $0 \le x \le 4$ and $F_X(x) = 1$ if $x > 4$. ($\lfloor x \rfloor$ is the greatest integer function of x.) The expectation is

$$
\mathbf{E}(X) = \sum_{i=0}^{4} if_X(i)
$$

=
$$
\frac{0.625 + 1.500 + 2.150 + 3.20 + 4.1}{1296} = \frac{500 + 300 + 60 + 4}{1296} = \frac{864}{1296} = \frac{2}{3}.
$$

Graphing gives

Figure 2: Graphs of $f_X(x)$ and $F_X(x)$.

B. let $D = \{1, 2, 3, \ldots, n\}$. Let $f(x) = cx$ for $x \in D$ and $f(x) = 0$ for $x \notin D$. Find c to make $f(x)$ a p.d.f. Find $F_X(x)$ and $\mathbf{E}(X)$.

To be a probability density function, we need $f(x) \geq 0$ so $c > 0$ must hold. Also the total probability satisfies

$$
1 = \sum_{x \in D} f(x) = \sum_{i=1}^{n} ci = \frac{cn(n+1)}{2},
$$

using the formula for the sum of the first n numbers. Hence

$$
c = \frac{2}{n(n+1)}.
$$

Using the same formula we get the cumulative distribution function. For $x \in D$,

$$
F_X(x) = \sum_{j \in D \text{ and } j \le x} f(j) = \sum_{j=1}^x c_j = \frac{x(x+1)}{n(n+1)}.
$$

Thus for any real x, $F_X(x) = 0$ if $x < 1$, $F_X(x) = 1$ if $x \ge n$ and $F_X(x) = F_X(\lfloor x \rfloor)$ if $1 \leq x \leq n$, where $\lfloor x \rfloor$ denotes the greatest integer function.

Using the formula for the sum of the first n squares, the expectation is

$$
\mathbf{E}(X) = \sum_{x \in D} x f(x) = \sum_{i=1}^{n} c i^2 = \frac{2}{n(n+1)} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{2n+1}{3}.
$$