Math 5010 § 1. Solutions to Sixth Homework
Treibergs February 27, 2009

151[1] A box contains 13 sound grapefruit and three that are rotten. You pick four at random.

(a) Describe the sample space.
(b) Let X be the number of sound grapefruit you pick. Find fx(x) and E(X).

(a.) This is an example of a hypergeometric random variable because the four grapefruit
are drawn without replacement. Thus the sample space € is all combinations of the 13 4+ 3
grapefruit taken four at a time. In other words, it is the collection of subsets of size four
from all 16 grapefruit. Thus |Q| = (146).

(b.) If X is the number of sound grapefruit among those you pick, then D = X(Q) =
{1,2,3,4} are the values taken by X. Since the number of rotten grapefruit in my selection
is at most the number of rotten grapefruit in the box, 4 — z < 3, we must have z > 1.
The number of combinations with x sound grapefruit and 4 — x rotten ones is the number
of ways of choosing a subset of size x from 13 times the number of ways of choosing the
remaining 4 — z from the 3 rotten ones. Thus if x € D,
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It follows that the expectation
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A. Roll four dice. Let X be the number of sizes. Find Q, D, fx(z), Fx(z) and E(X). Graph
fX (l’) and Fx(lr)
X ~ binom(n,p) is distributed according to a binomial distribution. The n = 4 rolls of

the dice are assumed independent and the probability of success, that is of rolling a six, is
p=P(S) = é. The sample space is the record of four rolls

Q = {(z1,x2,23,24) : x; € {S,F} for all i.}.

Alternately, the sample space could be the four-tuple of numbers rolled. D = X(Q} =
{0,1,2,3,4} is the set of possible values of the random variable. For z € D, the probability
of x sixes is the number of ways to get = sixes in four rolls times the probability of getting
a particular sequence of x sixes and 4 — x non-sixes
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Figure 1: Table of p.d.f and c.d.f for x € D.

and fx(x) =0if x ¢ D. Values are given in Figure 1. The cumulative distribution function
for z € D is given by

Fx(x)= > fx()=>_ fx().
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Note that for any real 2, Fx(z) =0if 2 < 0, Fx(x) = Fx(|z]) if 0 <2 <4 and Fx(x) =1
if x > 4. (|z] is the greatest integer function of x.) The expectation is
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Graphing gives
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Figure 2: Graphs of fx(x) and Fx ().



B. let D ={1,2,3,...,n}. Let f(x) = cx forx € D and f(z) =0 for x ¢ D. Find ¢ to make
f(x) a p.d.f. Find Fx(z) and E(X).

To be a probability density function, we need f(z) > 0 so ¢ > 0 must hold. Also the total
probability satisfies

n

1= Y fa) = ei= D,

xeD i=1
using the formula for the sum of the first n numbers. Hence
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Using the same formula we get the cumulative distribution function. For z € D,
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Thus for any real z, Fx(z) = 0if x < 1, Fx(z) = 1if x > n and Fx(z) = Fx(|z]) if

1 <z <n, where |z] denotes the greatest integer function.

Using the formula for the sum of the first n squares, the expectation is
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