
Math 5010 § 1.
Treibergs

Solutions to Seventh Homework
March 6, 2009

151[25] Suppose that the probability of an insect laying n eggs is given by the Poisson distribution
with mean µ > 0, that is, by the probability distribution given over all the nonnegative inte-
gers defined by e−µµn/n!, n ∈ D = {0, 1, 2, 3, . . .}. Suppose further, that the probability of
an egg developing is p. Assuming mutual independence of the eggs, show that the probability
distribution fY (y) for the probability that there are y survivors is also of Poisson type, and
find the mean.

We are given two random variables, X, the number of eggs laid and Y , the number of eggs
that survive. Both X and Y take values in D. The probability that n ∈ D eggs are laid is

fX(n) = P({X = n}) =
e−µµn

n!
Given that n eggs are laid, then since each of the eggs survive independently, the number of
these that survive is a binomial variable, so that the conditional probability that y survive
is given by

fY (y|{X = n}) = P({Y = y}|{X = n}) =


(

n

y

)
py qn−y, if y ∈ {0, 1, 2, . . . , n};

0, otherwise.

Note that the number that survive can’t be more than the number of eggs laid. Now
condition on the number of eggs laid. That is, the sets {X = n} for n ∈ D partition Ω, that
is they are mutually disjoint and exhaustive. We use the fact that the conditional mass
function is zero if y > n because more can’t survive than are laid, P({Y = y}|{X = n}) = 0
if y > n. By the partitioning formula, if y ∈ D,

fY (y) = P({Y = y}) = P

( ∞⋃
n=0

({Y = y} ∩ {X = n})

)

=
∞∑

n=0

P ({Y = y} ∩ {X = n})

=
∞∑

n=0

P ({Y = y}|{X = n}) P({X = n})

=
∞∑

n=y

(
n

y

)
py qn−y e−µµn

n!

=
e−µ py µy

y!

∞∑
n=y

qn−yµn−y

(n− y)!

=
e−µ py µy

y!
eqµ =

e−(1−q)µ py µy

y!
=

e−pµ (pµ)y

y!
.

Thus we see that the distribution is also Poisson, but this time the parameter is pµ instead
of µ. Since the mean of a Poisson distribution is the parameter we get

E(Y ) = pµ.

This should not come as a surprise. It says that if an insect lays on average E(X) = µ
eggs in a given period and p is the survival rate, then there should be on average pµ eggs
surviving in the same period.

1



[A.] Suppose that X ∼ Geom(p) is a geometric random variable with parameter p. Find

(a) P(X is odd);

(b) P(X is even);

(c) P(X > k);

(d) Let k be an integer such that 1 ≤ k ≤ n. Find P(X = k|X ≤ k);

(e) P(2 ≤ X ≤ 9|X ≥ 4);

(f) Let k ∈ N. Let g(x) = min(x, k) and Y = g(X). Find the pmf fY (y) and the
expectation E(Y );

(g) E(1/X).

The standard picture of a geometric variable is a sequence of independent coin flips where
the probability of head is p and X is the number of flips to get the first head. It takes
values in the natural numbers D = N = {1, 2, 3, . . .}, and its pmf for x ∈ D is

fX(x) = P(X = x) = p qx−1.

(a.) The event that X is odd is given by

{X is odd} = {X = 1} ∪ {X = 3} ∪ {X = 5} ∪ · · · =
∞⋃

k=0

{X = 2k + 1}

Since these are disjoint events, we may add using the geometric sum
∑∞

k=0 rk = (1− r)−1

with r = q2,

P(X is odd) =
∞∑

k=0

P(X = 2k + 1) =
∞∑

k=0

p q2k =
p

1− q2
=

1
1 + q

.

(b.) The complementary event is

P(X is even) = P({X is odd}c) = 1−P(X is odd) = 1− 1
1 + q

=
q

1 + q
.

(c.) The event that X is greater than k is

{X > k} =
⋃

x ∈ D and x > k

{X = x}

Since these are disjoint events, we may add using the geometric sum. If k + 1 ∈ D,

P(X > k) =
∞∑

x=k+1

p qx−1 = p
(
qk + qk+1 + qk+2 + · · ·

)
= p qk

(
1 + q + q2 + · · ·

)
=

p qk

1− q
= qk.

Note that this implies for k ∈ D, P(X ≥ k) = P(X > k − 1) = qk−1. Also the cumulative
distribution function for x ∈ D,

FX(x) = P(X ≤ x) = P({X > x}c) = 1−P(X > x) = 1− qx. (1)
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(d.) If k is an integer so that 1 ≤ k ≤ n, then the event

{X = k} ⊂ {X ≤ n}.

Compute conditional probabilities as usual using (1)

P(X = k|X ≤ n) =
P({X = k} ∩ {X ≤ n})

P(X ≤ n)
=

P(X = k)
P(X ≤ n)

=
p qk−1

1− qn
.

(e.) Using the fact that the latter events are disjoint

{X > 3} = {4 ≤ X ≤ 9} ∪ {X > 9}

we get the probability using (c.),

P(4 ≤ X ≤ 9) = P(X > 3)−P(X > 9) = q3 − q9.

Equivalently, P(4 ≤ X ≤ 9) = P(X ≤ 9) − P(X ≤ 3) = FX(9) − FX(3). We compute
conditional probabilities as usual:

P(2 ≤ X ≤ 9|X ≥ 4) =
P({2 ≤ X ≤ 9} ∩ {X ≥ 4})

P(X ≥ 4)
=

P(4 ≤ X ≤ 9)
P(X > 3)

=
q3 − q9

q3
= 1− q6.

(f.) For the natural number k, the function

g(x) = min(x, k) =

{
x, if x < k;
k, if x ≥ k.

g maps D to D′ = {1, 2, 3, . . . , k}. Thus if y ∈ D′ and y < k then there is exactly one
x ∈ D such that y = g(x), namely, x = y. If y = k then the set of x’s that map to k is
{k, k + 1, k + 2, . . .} = {X ≥ k}. This set is also called the preimage g−1({k}). Using the
formula for the pmf of the new random variable Y = g(X) we have

fY (y) =
∑

x ∈ D such that g(x) = y

fX(x).

For this g(X), using (c.), it becomes for y ∈ D′,

fY (y) =

{
fX(y) = p qy−1, if y < k;∑∞

x=k fX(x) = P(X ≥ k) = qk−1, if x = k.

Of course, fY (y) = 0 if y /∈ D′.

To find the expectation we may use the definition or Theorem 4.3.4, which give the same
expression. Thus if k > 1,

E(Y ) =
∑

y∈D′

y fY (y) =

(
k−1∑
y=1

y p qy−1

)
+ kqk−1 = p

d

dq

(
k−1∑
y=0

qy

)
+ kqk−1

= p
d

dq

(
1− qk

1− q

)
+ kqk−1 = p

(
−kqk−1

1− q
+

1− qk

(1− q)2

)
+ kqk−1 =

1− qk

p
.

If k = 1 there is one term and E(Y ) = 1 so the formula works for k ≥ 1 as well. Since
g(x) ≤ x, it is no surprise that this is close to but less than E(X) = 1/p.

(g.) To find the expectation of Z = h(X) where h(x) = 1/x, we use Theorem 4.3.4.

E(Z) =
∑
x∈D

h(x) fX(x) =
∞∑

x=1

p qx−1

x
=

p

q

∞∑
x=1

qx

x
= −p log(1− q)

q
= −p log p

q
.

See problem 151[18] and page 23.
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[B.] Suppose that an unfair coin is tossed repeatedly. Suppose that the tosses are independent
and the probability of each head is p. Let X denote the number of tosses it takes to get three
heads. Derive the formulas for E(X) and Var(X).

X is distributed according to the negative binomial distribution with parameters k = 3 and
p. The variable takes values in D = {k, k+1, k+2, . . .} since one must toss the coin k times
at least in order to have k heads. In order that the k-th head occur at the x-th toss, there
must be k − 1 heads in the first x− 1 tosses and the x-th toss has to be a head. Thus the
negative binomial pmf is for x ∈ D,

fX(x) =
(

x− 1
k − 1

)
pk qx−k.

The expectation is given by the sum

E(X) =
∑
x∈D

x fX(x) =
∞∑

x=k

x

(
x− 1
k − 1

)
pk qx−k.

Using the formula for binomial coefficients,

x

(
x− 1
k − 1

)
=

x (x− 1)!
(k − 1)! (x− k)!

=
k x!

k (k − 1)! (x− k)!
=

k x!
k! (x− k)!

= k

(
x

x− k

)
.

Inserting and changing dummy index by j = x− k,

E(X) =
∞∑

x=k

k

(
x

x− k

)
pk qx−k = k pk

∞∑
j=0

(
k + j

j

)
qj .

From page 22, the negative binomial series is

∞∑
j=0

(
m + j − 1

j

)
zj = (1− z)−m

which makes sense even if m > 0 is a real number. In our series, the role of m is played by
m = k + 1. Thus

E(X) = k pk (1− q)−(k+1) =
k

p
.

To compute the variance, we use the computation formula

Var(X) = E(X2)−E(X)2.

Using the equation x2 = (x + 1)x− x, the expectation of the square is

E(X2) =
∑
x∈D

x2 fX(x) =
∞∑

x=k

x2

(
x− 1
k − 1

)
pk qx−k

=
∞∑

x=k

(x + 1)x
(

x− 1
k − 1

)
pk qx−k −

∞∑
x=k

x

(
x− 1
k − 1

)
pk qx−k.

The second sum is −E(X). We have another binomial coefficient identity

(x + 1)x
(

x− 1
k − 1

)
=

(x + 1)x (x− 1)!
(k − 1)! (x− k)!

=
(k + 1) k (x + 1)!

(k + 1) k (k − 1)! (x− k)!

=
(k + 1) k (x + 1)!
(k + 1)! (x− k)!

= (k + 1)k
(

x + 1
x− k

)
.
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Inserting this, changing dummy index to j = x − k and using m = k + 2 in the negative
binomial series, the first sum in E(X2) yields

∞∑
x=k

(x + 1)x
(

x− 1
k − 1

)
pk qx−k =

∞∑
x=k

(k + 1)k
(

x + 1
x− k

)
pk qx−k

= (k + 1)kpk
∞∑

j=0

(
k + j + 1

j

)
qj = (k + 1)kpk (1− q)−(k+2) =

(k + 1)k
p2

.

Assembling,

Var(X) =
(k + 1)k

p2
− k

p
− k2

p2
=

(k + 1)k − pk − k2

p2
=

kq

p2
.
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