1. Let X and Y be metric spaces, and let $f : X \to Y$ and $g : X \to Y$ be continuous functions. Suppose that the set $\{x \in X : f(x) = g(x)\}$ is dense in X.

Show that f(x) = g(x) for each $x \in X$.

2. Let X, Y be metric spaces. Assume also that X is compact. Let $f : X \to Y$ be a continuous map.

Prove that if D is a closed subset of X, then f(D) is a closed subset of Y.

3. Let $f_n : [0,1] \to \mathbb{R}$ be defined by:

$$f_n(x) = \frac{x^n}{1+x^2}$$

Show that f_n converges pointwise on [0, 1], but this convergence is not uniform.

4. Show that

$$\lim_{n \to \infty} \int_0^\infty \sin(nx) e^{(-nx^2)} \, dx = 0$$

5. Let $A = \{u_n\}_{n=1}^{\infty}$ be an orthonormal set of vectors in a Hilbert space H. Show that A is not a compact subset of H.

(Hint: compute the distance between any two vectors in A).

6. Let $g: [0,1] \to \mathbb{R}$ be a bounded measurable function. Define $T: L^1([0,1]) \to \mathbb{R}$ by $F(f) = \int_0^1 f(x)g(x) dx$. Show that T is a bounded linear functional on $L^1([0,1])$.

7. Let $u_n : \mathbb{Z} \to \mathbb{R}$ be defined by

$$u_n(k) = \begin{cases} 1, & \text{if } k \ge 0 \text{ and } k = n \\ 0, & \text{otherwise.} \end{cases}$$

Show that $A = \{u_n\}_{n=1}^{\infty}$ is an orthonormal system in $L^2(\mathbb{Z})$, but it is not a Hilbert basis of $L^2(\mathbb{Z})$.

8. Let $X \subset C([-1, 1])$ be the subspace consisting of polynomials. Consider the operator $T: X \to X, T(f) = f'$ (the derivative of f). Show T is linear and onto X. Is T bounded? Justify your answer.