Math 5210 § 2. Second Midterm Exam Name: Golutions
Treibergs Feb. 26, 2025

1. Let (M,d) be a metric space and let E,F C M. Define: E is open. Define F is closed.
Define x € M is a limit point of F'. Prove directly that F is closed if and only if it contains
its limit points.

E is open if for every x € E there is r > 0 so that B,.(x) C E, where B,.(z) = {y € M :
d(z,y) < r} is the open ball of radius r about z. F' is closed if the complememt F¢ = M\ F
is open.

x € M is a limit point of F if for every ¢ > 0 we have (B:(z)\{z}) N F # 0.

Assume that F' is closed. Arguing by contrapositive, we show if x is not in F' then it is not
a limit point of F. Since x € F° is open, there is an r > 0 such that B,.(c) C F¢. Now if
e < r then B.(z)\{z} C B,(x) C F° so (Bs(x)\{z}) N F =0 so z is not a limit point of F.
Now, assume that F' contains its limit points. Arguing by contrapositive, we show if F' is
not closed there is a limit point of F' not in F'. Thus F° is not open: there is x € F° such
that for all £ > 0 the ball B.(z) N F # (). As « ¢ F this says x is a limit point of F which
is not in F.

2. Let (M,d) be a metric space. Define: M is compact. Complete the statement of a theorem
you’ll use to answer the question.
Theorem. (M,d) is a compact metric space if and only if ...

Let (M,d) be a compact metric space. Suppose that (F,) is a decreasing sequence of
nonempty closed sets in M, and that (\,—, Fy, is contained in an open set G. Show that
F,, C G for all but finitely many n.

Our author defines (M, d) to be compact if it is complete and totally bounded.

Theorem. (M,d) is a compact metric space if and only if every open cover has a finite
subcover. Namely, if {G,}aca is a collection of open sets such that M C |J Gy then
there are finitely many indices {1, ..., ai} such that M C G, U-+- UGy,

acA

To prove the assertion, let Z = (), _, F,, be the intersection. Consider the collection of open
sets {G} U {F¢ : n € N}. This collection covers M. If x € Z then z € G. If © ¢ T then

there is ng so that x ¢ F,,,, in other words x € F¢

0 no*

By the Theorem. there is a finite subcollection n; < no < - -+ < n such that
McGUF; U---UFy .

It follows that F; C G for all j except possibly for j < nj. This is because of nesting: if
> ny > j then Fy, C F,, C Fj so that Fen Fy =@ forall j=1,...,n, thus F, C G.

Another argument may be given using the sequential characterization of compactness. If the
conclusion fails, there is a subsequence z,, € F,, \G for k =1,2,...,00. By compactness
there is a convergent subsequence of (z,,) converging to z € M. Since (z,,) C G¢, by
the sequential characterization of closedness, x € G¢. On the other hand, by nesting, for
nj > m we have z,, € F,, C F, so the characterization of closedness, we have x € F}, for
all m. Thus z € Z C G, a contradiction,

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) STATEMENT: Suppose the map on metric spaces f : (M,d) — (N, p) is continuous. If
f(M) is connected then M is connected.

FALSE. Let f: R — R be constant and M C R be M = (-2,-1)U(1,2).



(b) STATEMENT: Every metric space is homeomorphic to one of finite diameter.

TRUE. Any metric space (M,d) is homeomorphic to the same space (M,d) with
bounded metric d. For example, putting

7 _ d(.’L’, y)
R )

works because the identity map ¢ : (M,d) — (M, d) and it inverse ¢!

are continuous.

(¢) STATEMENT: The set A = {(x1,xa,...) € by : |x;| <1 for all i.} is compact in {s.
FALSE. The set contains the sequence (e,) where e, = (0,...,0,1,0,...) wth the “1”
in the n-th slot. Now |le; — ex||2 = /2 if j # k, so that any ball with radius r < v/2/2
can contain at most one of the members of the sequence. In particular, the sequence,
and hence A cannot be covered by finitely many balls of radius 7 < v/2/2. A is not
totally bounded so not compact.

4. Forx € R, let T : C([0,1]) — C([0,1]) be defined by T[y](t) =t + /Ot s f(s)ds.

Show that T satisfies the hypotheses of the Contraction Mapping Theorem. Show that the
fized point is a solution to the differential equation f'(t) =tf(t) + 1.

Let X = C([0,1]) and || e || denote the sup-norm on [0, 1] making (X, || e ||) a complete
normed linear space (Banach Space). To show that 7' : X — X, for y € X we have ty(t) is
a continuous function on [0, 1] so its indefinite integral is continuous. Adding the continuous
function ¢ yields the transformation

Ty](¢) :t—i-/o sf(s)ds

which maps y to a continuous function T[y]. To show that T satisfies the contraction
mapping hypotheses, we must also show that T is a contraction on X. Fix t € [0, 1] and
pick z,y € X. Estimating

|T[x](t) — Tlyl(t)| = ‘t + /0 sx(s)ds —t — /0 sy(s)ds

/ S (m(s) — y(s)) ds
0

< / s la(s) — y(s)| ds

t
s/snx—ynds
0

t2
= Cle -l

< She—yl
||z —yl.
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Taking supremum on the left side over ¢t € [0, 1] yields
1
ITTa] = Tyl < 5l —yll,

showing that T is a contraction with constant %

By the Contraction Mapping Theorem, there is a unique z € X such that z = T[z]. In
other words

z(t) :t+/0 sz(s)ds.



Since ¢ z(t) is continuous, by the Fundamental Theorem of Calculus, the indefinite integral
is continuously differentiable, as is ¢, so that their sum may be differentiated to yield the

solution of the desired ODE
%(t) =1+1tz(t)
at’ ’

Evaluating at zero, we also have the initial value z(0) = 0.

. Show £, is complete.

Recall that {oo = {f : N = R : || f|]| < oo} is the set of bounded sequences of reals, where
the norm is the sup norm || f|| = sup{|f(k)| : k¥ € N}. To show £, is complete it has to be
shown that every Cauchy Sequence (z,,) in £y converges in £,. Choose a Cauchy Sequence
(zp) in £

First we construct a candidate for the limit. Fix any £ € N. We observe that since (z,,) is
Cauchy in £, for every € > 0 there is an N € N such that

|xn — zm]| <€ whenever m,n > N.

Hence
|Tn (k) — 2 (B)| < ||Tn — 2| < € whenever m,n > N.

Thus the real sequence (z,(k)) is a Cauchy Sequence. Since the reals are complete, there
is a real limit

x(k) = lim xz, (k).

n—oo
x is our candidate for the limit of (zy,).

Second, we show that x € /.. We know that a Cauchy sequence is bounded. Thus there is
M < oo such that ||z,|| < M for all n. Thus for each k, |z, (k)| < ||zn] < M. Passing the
inequality to the limit, for each k,

(k)| = lim |, ()| < M

so z is a bounded sequence or x € {o,. Taking sup over k implies ||z|| < M.

Third, we must show that z,, — z in f,. Use the fact that (x,) is a Cauchy sequence. We
have for every € > 0 there is an N € N such that

lTn — zml| <€ whenever m,n > N.
For any k € N,

|Tn (k) — 2 (B)| < ||Tn — 2| < € whenever m,n > N.

Taking the limit n — oo implies

|x(k) — xm (k)| = lim |z, (k) —zm (k)] <€ whenever m > N.

n—oo
Taking sup over k implies
|z — x| <e whenever m > N,

which is the statement that z,, — = in {.



