Math 5210 § 2. Third Midterm Exam Name: Golutions

Treibergs Apr. 2, 2025
1. Let the partial sum Sy (x) = Zn: (sin kz) Show that the limit exists: L = lim Sy,  ———
' b R CEE A \an 1 )
Note that
(sinkx) 1
oF | = oF
and

iik:1<oo.
k:12

So, by the Weierstrass M-test, the sum converges uniformly
2 (sin kx)
Su(x) = S(z) = o

k=1

As a uniform limit of continuous S, (x), we have S(z) is continuous.

To see that the limit exists, choose £ > 0. By the continuity of S(z) at 7/2, thereisa § > 0

so that - . W
S(I)*S(i)‘ <3 whenever \x—i\ < 6.
Let
™
Tn = .
2n+1

Since x,, — Z as n — oo, there is N7 such that |xn — g| < 6§ whenever n > Nj.

2
By uniform convergence, there is an Ny € R such that

|Sm(z) — S(z)| < g whenever € R and n > Ns.
Let N3 = max{Ny, Na}. For any n > Nj,
€
Su(n) = S| < ISulen) = S(@a)l + [S(zn) - SC)| <

This proves that

00 .
L ™m o (TN (-1)7 2
L=, on <2n+1>—5(2)—2 221 5

2. State the Arzela-Ascoli Theorem for subsets S C C[0,1].

Let T : C[0,1] — C([0, 1] be defined by T|f](x) = /01 sin(z —t) f(t) dt.

For M e R, let B={f €C[0,1] : || flloo < M}. Show that every sequence (g,) C T|B| has

a COHU@’I’gETLt subsequence.

Arzela-Ascoli Theorem. Let S C C[X] where X is a compact metric space. Then S is
compact if and only if it is closed, uniformly bounded and equicontinuous.



For us, X = [0,1]. Choose f, € B such that g, = T[fn]. Then for any =

|9n (@) =I T [fn](2)| = ’/01 sin(z —t) fn(t) dt‘

1 1 1
s/o ISm(x—t)l\fn(tﬂdtS/O ||fn||dt§/o Mdt = M

Since this applies to all n and x, we see that (g,,) is uniformly bounded.
For any z,y € [0, 1]

1

|9n () = gn (W) =[T [ful(x) = Tfnl ()| = | sin(z —t) fu(t) dt —/0 sin(y —t) fn(t) dt

1 1
< / [sin(x — 1) — sin(y — 0)] |fa(6)] dt < / & — gl [ ful dt

1
S/ [z —y| M dt = M|z —yl,
0

where we have used |sin(x —t) —sin(y — t)| < |z — y|. Since this applies to all n, x and y,
we see that (g,) are uniformly M-Lipschitz, thus uniformly equicontinuous.

By the Arzela-Ascoli Theorem, unifolmly bounded and equicontinuous sequences (g,) have
a convergent subsequence in C[0, 1].

It turns out that 7[B] is not closed.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) STATEMENT: The nth Bernsten operator B,[f](z) = > p_o f (£) (})a* (1 —2)"~F is
a bounded operator B, : C[0,1] — C([0, 1].
TrRUE. For f € C[0,1] and any x we have

)
()!(Z)w’”—@ ’
)0

< 1A ) - art < 1L
k=0
Taking supremum over z, ||B,[f]]| < ||f|l.- This is true for all f so the operator is
bounded and its operator norm ||B,|| < 1. In fact the operator norm equals one
because B,,[const.|(x) = const.

(b) STATEMENT: | e |1 and || e ||z are equivalent norms on R™.

TRUE. There are positive constants ¢1, co such that ¢i]| e |1 < || o |2 < 2] @1 To
see this, from the definitions of norms for x € R™ and the Schwartz Inequality,

lzlle = fanl = 1 |l < (L1, Dl 2]l = Valllz;
k=1 k=1

n n 2
213 =D lexl® < (Z mkl) = [l=[1%.
k=1 k=1

Thus the norms are equivalent with ¢; = 1/4/n and ¢y = 1.



(c) STATEMENT: F, sets are closed.
FALSE. Countable unions of closed sets need not be closed, for example

nf_jl {o, nZJ = [0,1).

4. State the Stone Weierstrass Theorem for real functions of C[0,1]. Let

H = {Z ¢ cos(kx) : ¢y € R}

k=0
be the set of cosine polynomials. Show that H is an algebra. Is H dense in C[0,1]? Is H
dense in C[—1,1]7

Stone Weierstrass Theorem for Real Scalars. Let A C C[X] be a subalgebra of the
real valued continuous functions on a compact metric space X. If A separates points in X
and vanishes at no point of X, then A is dense in C[X].

For us X = [0,1] or [-1,1]. To show that H is an algebra, we must first show that it is a
vector subspace. It suffices to show that H is closed under linear combinations. If f,g € H
and «, 8 € R, then

fz) = ch cos(kx),
k=0

g(x) = Z dy, cos(kx),
k=0

where ¢, and dj are real. For convenience, put ¢; = 0 for k > n, dp = 0 for k > m and
¢ = max{n,m}. Then

n m ¢
af + 9=« (Z Cr cos(kx)) + B (Z dy, cos(km)) = Z (aeg, + Bdy) cos kx
k=0 =

= k=0 0

is a cosine polynomial. Second, we must show products of cosine polynomials are cosine
polynomials.

fg= (Z Ck COSU”’)) <Z dp COS(pJC)> = chk d, cos(kx) cos(pz)

k=0 k=0 p=0
We can express the product of cosines as a sum using a trig identitiy.

cos(k + p)x = cos kx cos pr — sin kx sin px

cos(p — k)x = cos kx cos px + sin kx sin px

thus, adding,
1
cos kx cos px = 3 (cos(k; + p)x + cos(p — k)m)
Thus, the cosine polynomials are closed under linear combinations and products, i.e., H is
a subalgebra.

1 € H so H does not vanish at a point. If X = [0, 1] then cos x is strictly decreasing, so for
any x # y in [0, 1], cosz # cosy so it separates points. By the Stone Weierstrass Theorem,
H is dense in CJ0, 1].



The functions of H are even, so they don’t separate points of C[—1, 1] because f(—1) = f(1)
for every f € H. H is not dense in C[—1,1]. Indeed x can’t be approximated because

[# = flloo > max{| =1 — f(=1)[,[1 = f(1)[} = max{] =1 - f(Q)],|f(1) - 1]}
>L-1-f)|+|fQ)-1) =L —-1-1=1forall feH.
. Let E C R. Define the Lebesgue outer measure m*(E). Let E C R. Define what it means

for E to be Lebesgue measurable. Let E C R be a null set m*(E) =0 and S C E. Show
that S is Lebesgue measurable. (You may assume m* is countably subadditive.)

For a set £ € R, the Lebesqgue QOuter Measure is

k=1 k=1

where the infimum is taken over all coverings of E by countable unions of intervals and
£(I}) denotes the length of the interval Ij.

A set E C R is Lebesgue Measurable if for each € > 0 there is a closed set F' and an open
G with F C E C G such that m*(G\F) < e.

To show that S is measurable, lets take F' = (). Since m*(F) = 0, by the definition of
outer measure, there are intervals I, with endpoints oy, < B, such that E C |-, I with
> ey U(Ix) < §. Let Ji be a slightly larger open interval

€ €
Jp = (OékfmaﬂkJrW)-

Then I}, C Jy and £(Jy) = {(Ix) + 55+- Then the union G = |J,—, Ji is an open set such
that ' =( Cc S C E C G. By the definition of outer measure

k=1 k=1
<> ) + 5o = (Ze(m) rictei=c
=1 k=1

Thus S is maesurable.



