
Math 5210 § 2.
Treibergs

Third Midterm Exam Name: Solutions
Apr. 2, 2025

1. Let the partial sum Sn(x) =

n∑
k=1

(sin kx)

2k
. Show that the limit exists: L = lim

n→∞
Sn

(
πn

2n+ 1

)
.

Note that ∣∣∣∣ (sin kx)2k

∣∣∣∣ ≤ 1

2k

and
∞∑
k=1

1

2k
= 1 < ∞.

So, by the Weierstrass M-test, the sum converges uniformly

Sn(x) ⇒ S(x) =

∞∑
k=1

(sin kx)

2k
.

As a uniform limit of continuous Sn(x), we have S(x) is continuous.

To see that the limit exists, choose ε > 0. By the continuity of S(x) at π/2, there is a δ > 0
so that ∣∣∣S(x)− S(

π

2
)
∣∣∣ < ε

2
whenever |x− π

2
| < δ.

Let
xn =

πn

2n+ 1
.

Since xn → π
2 as n → ∞, there is N1 such that

∣∣xn − π
2

∣∣ < δ whenever n ≥ N1.

By uniform convergence, there is an N2 ∈ R such that

|Sm(x)− S(x)| < ϵ

2
whenever x ∈ R and n ≥ N2.

Let N3 = max{N1, N2}. For any n ≥ N3,∣∣∣Sn(xn)− S(
π

2
)
∣∣∣ ≤ |Sn(xn)− S(xn)|+

∣∣∣S(xn)− S(
π

2
)
∣∣∣ < ε

2
+

ε

2
.

This proves that

L = lim
n→∞

Sn

(
πn

2n+ 1

)
= S

(π
2

)
=

∞∑
j=1

(−1)j

22j−1
=

2

5
.

2. State the Arzela-Ascoli Theorem for subsets S ⊂ C[0, 1].

Let T : C[0, 1] → C([0, 1] be defined by T [f ](x) =

∫ 1

0

sin(x− t) f(t) dt.

For M ∈ R, let B = {f ∈ C[0, 1] : ∥f∥∞ ≤ M}. Show that every sequence (gn) ⊂ T [B] has
a convergent subsequence.

Arzela-Ascoli Theorem. Let S ⊂ C[X] where X is a compact metric space. Then S is
compact if and only if it is closed, uniformly bounded and equicontinuous.
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For us, X = [0, 1]. Choose fn ∈ B such that gn = T [fn]. Then for any x

|gn(x)| =|T [fn](x)| =
∣∣∣∣∫ 1

0

sin(x− t) fn(t) dt

∣∣∣∣
≤
∫ 1

0

| sin(x− t)| |fn(t)| dt ≤
∫ 1

0

∥fn∥ dt ≤
∫ 1

0

M dt = M.

Since this applies to all n and x, we see that (gn) is uniformly bounded.

For any x, y ∈ [0, 1]

|gn(x)− gn(y)| =|T [fn](x)− T [fn](y)| =
∣∣∣∣∫ 1

0

sin(x− t) fn(t) dt−
∫ 1

0

sin(y − t) fn(t) dt

∣∣∣∣
≤
∫ 1

0

| sin(x− t)− sin(y − t)| |fn(t)| dt ≤
∫ 1

0

|x− y| ∥fn∥ dt

≤
∫ 1

0

|x− y|M dt = M |x− y|,

where we have used | sin(x− t)− sin(y − t)| ≤ |x− y|. Since this applies to all n, x and y,
we see that (gn) are uniformly M -Lipschitz, thus uniformly equicontinuous.

By the Arzela-Ascoli Theorem, unifolmly bounded and equicontinuous sequences (gn) have
a convergent subsequence in C[0, 1].
It turns out that T [B] is not closed.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: The nth Bernsten operator Bn[f ](x) =
∑n

k=0 f
(
k
n

) (
n
k

)
xk(1− x)n−k is

a bounded operator Bn : C[0, 1] → C([0, 1].
True. For f ∈ C[0, 1] and any x we have

|Bn[f ](x)| =

∣∣∣∣∣
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k

∣∣∣∣∣
≤

n∑
k=0

∣∣∣∣f (k

n

)∣∣∣∣ (nk
)
xk(1− x)n−k

≤
n∑

k=0

∥f∥
(
n

k

)
xk(1− x)n−k = ∥f∥.

Taking supremum over x, ∥Bn[f ]∥ ≤ ∥f∥. This is true for all f so the operator is
bounded and its operator norm ∥Bn∥ ≤ 1. In fact the operator norm equals one
because Bn[const.](x) = const.

(b) Statement: ∥ • ∥1 and ∥ • ∥2 are equivalent norms on Rn.

True. There are positive constants c1, c2 such that c1∥ • ∥1 ≤ ∥ • ∥2 ≤ c2∥ • ∥1. To
see this, from the definitions of norms for x ∈ Rn and the Schwartz Inequality,

∥x∥1 =

n∑
k=1

|xk| =
n∑

k=1

1 · |xk| ≤ ∥(1, 1, . . . , 1)∥2 ∥x∥2 =
√
n∥x∥2;

∥x∥22 =

n∑
k=1

|xk|2 ≤

(
n∑

k=1

|xk|

)2

= ∥x∥21.

Thus the norms are equivalent with c1 = 1/
√
n and c2 = 1.
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(c) Statement: Fσ sets are closed.

False. Countable unions of closed sets need not be closed, for example

∞⋃
n=1

[
0,

n

n+ 1

]
= [0, 1).

4. State the Stone Weierstrass Theorem for real functions of C[0, 1]. Let

H =

{
n∑

k=0

ck cos(kx) : ck ∈ R

}

be the set of cosine polynomials. Show that H is an algebra. Is H dense in C[0, 1]? Is H
dense in C[−1, 1]?

Stone Weierstrass Theorem for Real Scalars. Let A ⊂ C[X] be a subalgebra of the
real valued continuous functions on a compact metric space X. If A separates points in X
and vanishes at no point of X, then A is dense in C[X].

For us X = [0, 1] or [−1, 1]. To show that H is an algebra, we must first show that it is a
vector subspace. It suffices to show that H is closed under linear combinations. If f, g ∈ H
and α, β ∈ R, then

f(x) =

n∑
k=0

ck cos(kx),

g(x) =

m∑
k=0

dk cos(kx),

where ck and dk are real. For convenience, put ck = 0 for k > n, dk = 0 for k > m and
ℓ = max{n,m}. Then

αf + βg = α

(
n∑

k=0

ck cos(kx)

)
+ β

(
m∑

k=0

dk cos(kx)

)
=

ℓ∑
k=0

(αck + βdk) cos kx

is a cosine polynomial. Second, we must show products of cosine polynomials are cosine
polynomials.

fg =

(
n∑

k=0

ck cos(kx)

)(
m∑

p=0

dp cos(px)

)
=

n∑
k=0

m∑
p=0

ck dp cos(kx) cos(px)

We can express the product of cosines as a sum using a trig identitiy.

cos(k + p)x = cos kx cos px− sin kx sin px

cos(p− k)x = cos kx cos px+ sin kx sin px

thus, adding,

cos kx cos px =
1

2

(
cos(k + p)x+ cos(p− k)x

)
.

Thus, the cosine polynomials are closed under linear combinations and products, i.e., H is
a subalgebra.

1 ∈ H so H does not vanish at a point. If X = [0, 1] then cosx is strictly decreasing, so for
any x ̸= y in [0, 1], cosx ̸= cos y so it separates points. By the Stone Weierstrass Theorem,
H is dense in C[0, 1].
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The functions of H are even, so they don’t separate points of C[−1, 1] because f(−1) = f(1)
for every f ∈ H. H is not dense in C[−1, 1]. Indeed x can’t be approximated because
∥x− f∥∞ ≥ max{| − 1− f(−1)|, |1− f(1)|} = max{| − 1− f(1)|, |f(1)− 1|}
≥ 1

2 (| − 1− f(1)|+ |f(1)− 1|) ≥ 1
2 | − 1− 1| = 1 for all f ∈ H.

5. Let E ⊂ R. Define the Lebesgue outer measure m∗(E). Let E ⊂ R. Define what it means
for E to be Lebesgue measurable. Let E ⊂ R be a null set m∗(E) = 0 and S ⊂ E. Show
that S is Lebesgue measurable. (You may assume m∗ is countably subadditive.)

For a set E ∈ R, the Lebesgue Outer Measure is

m∗(E) = inf

{ ∞∑
k=1

ℓ(Ik) : E ⊂
∞⋃
k=1

Ik

}

where the infimum is taken over all coverings of E by countable unions of intervals and
ℓ(Ik) denotes the length of the interval Ik.

A set E ⊂ R is Lebesgue Measurable if for each ε > 0 there is a closed set F and an open
G with F ⊂ E ⊂ G such that m∗(G\F ) < ε.

To show that S is measurable, lets take F = ∅. Since m∗(E) = 0, by the definition of
outer measure, there are intervals Ik with endpoints αk ≤ βk such that E ⊂

⋃∞
k=1 Ik with∑∞

k=1 ℓ(Ik) <
ε
2 . Let Jk be a slightly larger open interval

Jk =
(
αk − ε

2k+2
, βk +

ε

2k+2

)
.

Then Ik ⊂ Jk and ℓ(Jk) = ℓ(Ik) +
ε

2k+1 . Then the union G =
⋃∞

k=1 Jk is an open set such
that F = ∅ ⊂ S ⊂ E ⊂ G. By the definition of outer measure

m∗(G\F ) = m∗(G) = m∗

( ∞⋃
k=1

Jk

)
≤

∞∑
k=1

ℓ (Jk)

≤
∞∑
k=1

[
ℓ(Ik) +

ε

2k+1

]
=

( ∞∑
k=1

ℓ(Ik)

)
+

ε

2
<

ε

2
+

ε

2
= ε.

Thus S is maesurable.
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