The following problems were taken from practie problems and final given Dec. 14, 1995.

- 1. Determine whether the following statements are true or false. If true, give a short argument. If false, give a counterexample.
	- (a) Let (X, d) be a metric space. Then there is an $E \subset X$ such that E is neither open nor closed.
		- TRUE: \bigcirc FALSE: \bigcirc

TRUE: \bigcap FALSE: \bigcap

- (b) Let (X, d) be a metric space and $A \subset X$ be a subset and $x \in X$ be some point. Then there is $a \in X$ so that $d(x, a) = d(A, a)$.
- (c) In all metric spaces (X, d) , there are always sets which are neither open nor closed. TRUE: \bigcap FALSE: \bigcap
- (d) Let $A \subset (X, d)$ be a subset of a metric space. Then the closure of the interior equals the closure $\overline{A^{\circ}} = \overline{A}$.
	- TRUE: \bigcap FALSE:
- (e) Let $A \subset (X, d)$ be a subset of a metric space. If A is open and dense then $A = X$. TRUE: \bigcirc FALSE: \bigcirc
- (f) Let $A \subset (X, d)$ be a subset of a metric space. If A is connected and $f : A \to Z$ is a continuous function with integer values, then f is constant.
- (g) Let (D, d) denote the disk $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ in the Euclidean plane (\mathbb{R}^2, d) . Then the completion is (\overline{D}, d) the closed disk with the metric of the plane.
	- TRUE: \bigcirc FALSE: \bigcirc

TRUE: \bigcap FALSE: \bigcap

(h) Let Q denote all open rectangles of \mathbb{R}^2 . (*e.g.* sets of the form $(a, b) \times (c, d)$.) Then Q is an open base for the usual topology of \mathbb{R}^2 .

$$
\boxed{\text{TRUE: } \bigcirc \bigg| \text{FALSE: } \bigcirc}
$$

- (i) Suppose $f_n \in \mathcal{C}([0,1])$ with sup-norm be a Cauchy sequence of nondecreasing functions. Then f_n converges to a continuous nondecreasing function.
	- TRUE: \bigcap FALSE: \bigcap
- (j) Suppose A is a closed and bounded subset in a metric space. Then A is compact. TRUE: \bigcap FALSE: \bigcap
- (k) Suppose Suppose (X, d) is a compact metric space and $J \subset X$ is a closed subset. Then J is compact.

(1) Suppose $K \subset U \subset \mathbb{R}^2$ be subsets of the plane such that K is compact and U is open. Then there is a polygonal curve (made of finitely many line segments joined end to end) curve in U which surrounds K .

TRUE: \bigcap FALSE:

(m) A function $h : [a, b] \to \mathbb{R}$ is called k-Lipschitz iff there is a constant $k < \infty$ so that for all $x, y \in [a, b], |h(x)?h(y)|?k|x?y|$. Assume that $f_n \to g$ uniformly in [a, b] and that for each n, $f_n(x)$ is k-Lipschitz with the same k. Show that g is Lipschitz..

$$
\boxed{\text{TRUE:} \quad \bigcirc \bigg| \text{FALSE:} \quad \bigcirc}
$$

(n) Let $\{a_n\}$ be a sequence in a metric space (X, d) and let $V = \{a_n : n \in \mathbb{N}\}\)$ be the set of values. If x is a limit point of the sequence a_m then x is an cluster point (limit point) of V .

(o) The sequence $f_n(x) = \begin{cases} nx, & \text{if } nx < 1; \\ 1, & \text{if } x > 1. \end{cases}$ that, if $nx \ge 1$, converges in $\mathcal{C}([0,1])$ to the discontinuous 1, if $nx \ge 1$ function $h(x) = \begin{cases} 0, & \text{if } x = 0; \\ 0, & \text{if } x = 0. \end{cases}$ $1, \text{ if } x > 0$.

TRUE: \bigcap FALSE:

(p) Suppose that $g: X \to R$ is a continuous function on a metric space. Then the sublevel set $S = \{x \in X : g(x) \leq 0\}$ is closed.

(q) Suppose A is a subset of a metric space (X, d) and let $x, y \in X$. Then $d(x, A) \leq$ $d(x, y) + d(y, A).$

$$
\boxed{\text{TRUE: } \bigcirc \bigg| \text{FALSE: } \bigcirc}
$$

TRUE: \bigcap FALSE:

(r) Suppose X is a metric space which is homeomorphic to $\mathbb R$ with its usual topology. Then X is complete.

- 2. Definition: Let E be a subset of a metric space (X, d) . A point $x \in X$ is a limit point of E if and only if every neighborhood of x contains infinitely many distinct elements of E . Let E ? denot the set of all limit points of E. Show that E ? is closed. Does the set of limit points equal the closure $E? = \overline{E}$?
- 3. The diameter of a set E in a metric space (X, d) is defined to be

$$
diam(E) := \sup_{(x,y)\in E\times E} d(x,y)
$$

Show that if E is compact, then there are two points $p, q \in E$ such that $d(p, q) = \text{diam}(E)$.

4. Let $E \subset \mathbb{R}$ be the subset given by

$$
E = \left\{ -1, -\frac{1}{2}, -\frac{1}{3}, \ldots \right\} \cup \left\{ x \in \mathbb{Q} : 1 < x < 2 \right\} \cup [3, 4) \cup (4, 5)
$$

- (a) Describe the interior E° , the boundary ∂E , the closure \overline{E} , closure of the complement $\overline{E^c}$ and the cluster points E?.
- (b) Is E totally bounded? Why? (take the usual metric of \mathbb{R} .)
- 5. Let (ℓ^{∞}, d) be the complete metric space of all bounded sequences $x = (a_i)$ of real numbers where for $x = (a_i)$, $y = (b_i)$ the distance is defined by

$$
d(x, y) = \sup_{i \in \mathbb{N}} |a_i?b_i|.
$$

Let $S_0 \in \ell^{\infty}$ be the subset consisting of those sequences such that a_i is nonzero for at most finitely many i. (For all $x \in S_0$ there is an $N \in \mathbb{N}$ so that $a_i = 0$ whenever $i \geq N$.) Show that the subspace (S, d) is incomplete. Let S_0 denote the completion of (S_0, d) . Find a subspace L isometric to $\overline{S_0}$ such that $S_0 \subset L \subset \ell^{\infty}$.

6. A real valued function f on a metric space (X, d) is called upper semicontinuous iff

 $(\forall x \in X)(\forall \epsilon > 0)(\exists \delta > 0)(\forall y \in X)[d(x, y) < \delta \implies f(y) < f(x) + \epsilon)]$

- (a) Give an example of an upper semicontinuous function on R which is not continuous.
- (b) Suppose f is an upper semicontinuous function on the compact metric space (X, d) . Show that f is bounded above.