
Math 5410 § 1.
Treibergs

First Midterm Exam Name: Practice Problems
September 19, 2014

1. Consider the family of differential equations for the parameter a:

x′ = ax+ sinx.

(a) Sketch the phase line when a = 0.

(b) Use the graphs of ax and sinx to determine the qualitative behavior of all bifurcations
that occur as a increases form −1 to 1.

(c) Sketch the bifurcation diagram for this family of differential equations.
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The equations y = sinx and y = ax for a = ±.1,±.3,±.5 are superimposed. The zeros of
ax+ sinx are the intersection points. So when a = 0 the rest points are at πk for integer k
and the flow directions alternate in each interval. As a moves from zero, the line y = −ax
intersects y = sinx at finitely many and fewer and fewer points. When a = .1 then there
are only five rest points. The stable/unstable pairs move toward each other as a increases
and vanish.

The bifurcation diagram are the solutions of a + sin x
x = 0, which are plotted as the blue

and red curves. It shows how as a departs from a = 0 and moves to |a| = 1, there are fewer
and fewer rest points that such that sources and sinks cancel pairwise as |a| increases. For
a > −1 near a = −1 there are only three rest points which collapse to one in a pitchfork
bifurcation at x = 0 and a = −1. After |a| ≥ 1 there is only one rest point at 0.
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2. Solve the initial value problem:

X ′ =

(
−5 3

9 1

)
X; X(0) =

(
5

6

)
.

The characteristic equation is

0 = det(A− λI) = (−5− λ)(1− λ)− 3 · 9 = λ2 + 4λ− 32 = (λ− 4)(λ+ 8).

Hence the eigenvalues are λ1 = 4 and λ2 = −8. The eigenvactors is

0 = (A− λ1I)V1 =

(
−9 3

9 − 3

)(
1

3

)
, 0 = (A− λ2I)V2 =

(
3 3

9 9

)(
1

−1

)
.

Then the general solution is

X(t) = c1e
4t

(
1

3

)
+ c2e

−8t
(

1

−1

)
.

Then the initial value problem is solved by

X(0) =

(
5

6

)
=

(
1 1

3 − 1

)(
c1
c2

)
=⇒ c1 =

11

4
, c2 =

9

4
.

3. Find the general solution:

X ′ =

(
−4 − 1

2 − 2

)
X.

The characteristic equation is

0 = det(A− λI) = (−4− λ)(−2− λ)− (−1) · 2 = λ2 + 6λ+ 10.

Hence the eigenvalues are λ = −3± i. An eigenvactor for λ = −3 + i is

0 = (A− λI)V =

(
−1− i − 1

2 1− i

)(
−1

1 + i

)
A complex solution is

X(t) = e(−3+i)t
(
−1

1 + i

)
= e−3t(cos t+ i sin t)

(
−1

1 + i

)
= e−3t

(
− cos t

cos t− sin t

)
+ ie−3t

(
− sin t

cos t+ sin t

)
The real and imaginary parts are independent solutions so the general solution is

X(t) = c1e
−3t
(
− cos t

cos t− sin t

)
+ c2e

−3t
(
− sin t

cos t+ sin t

)
.

4. Find a matrix T that brings the equation into canonical form. Show that your change of
variables does the job.

X ′ =

(
4 4

−1 0

)
X.

The characteristic equation is

0 = det(A− λI) = (4− λ)(−λ)− (−1) · 4 = λ2 − 4λ+ 4 = (λ− 2)2.
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Hence the eigenvalues are λ = 2, 2. An eigenvactor for λ = 2 is

0 = (A− λI)V =

(
2 4

−1 − 2

)(
2

−1

)
Since the matrix A − λI has rank one, there are no more independent eigenvectors. Then
the recipe says take any other independent vector, say W =

(
0
1

)
, and compute

AW =

(
4 4

−1 0

)(
0

1

)
=

(
4

0

)
= µV + νW = 2

(
2

−1

)
+ 2

(
0

1

)
Then consider the matrix T whose columns are V and (1/µ)W . Checking,

T−1AT =

( 1
2 0

1 2

)(
4 4

−1 0

)(
2 0

−1 1
2

)
=

( 1
2 0

1 2

)(
4 2

−2 0

)
=

(
2 1

0 2

)
To see if it does the job, change variables by X = TY . Then

TY ′ = X ′ =

(
4 4

−1 0

)
X = AX = ATY =⇒ Y ′ = T−1ATY =

(
2 1

0 2

)
Y

5. Show that the two systems are topologically conjugate by finding a conjugating homeomor-
phism and checking:

X ′ =

(
8 3

−6 − 1

)
X; Y ′ =

(
2 0

0 5

)
Y.

Computing the eigenvalues of the first system we find the characteristic equation is

0 = det(A− λI) = (8− λ)(−1− λ)− 3 · (−6) = λ2 − 7λ+ 10 = (λ− 2)(λ− 5),

thus the eigenvalues are λ1 = 2 and λ2 = 5. Thus the problem asks that we show that
the canonical form is topologically conjugate to the original matrix. This is achieved by a
linear map that changes variables. Computing the eigenvectors we find

0 = (A− λ1I)V1 =

(
6 3

−6 − 3

)(
1

−2

)
, 0 = (A− λ2I)V2 =

(
3 3

−6 − 6

)(
1

−1

)
.

The general solution is thus

X(t) = c1e
2t

(
1

−2

)
+ c2e

5t

(
1

−1

)
The particular solution when X(0) =

(
α
β

)
is gotten by solving(

α

β

)
=

(
1 1

−2 − 1

)(
c1
c2

)
=⇒ c1 = −α− β, c2 = 2α+ β.

Then the first flow may be written

ϕAt (α, β) = −(α+ β)e2t
(

1

−2

)
+ (2α+ β)e5t

(
1

−1

)
=

(
2e5t − e2t e5t − e2t

2e2t − 2e5t 2e2t − e5t

)(
α

β

)
The second equation is already diagonal, so the flow may be written

ϕBt (γ, δ) =

(
γe2t

δe5t

)
=

(
e2t 0

0 e5t

)(
γ

δ

)
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Putting T =
(

1 1
−2 −1

)
we have

T−1AT =

(
−1 − 1

2 1

)(
8 3

−6 − 1

)(
1 1

−2 − 1

)
=

(
−1 − 1

2 1

)(
2 5

−4 − 3

)
=

(
2 0

0 5

)

Letting h(X) = T−1X we must show

h ◦ ϕAt (x0) = ϕBt ◦ h(x0)

where ϕAt is the flow of the first system. Thus

h ◦ ϕAt (α, β) =

(
−1 − 1

2 1

)(
2e5t − e2t e5t − e2t

2e2t − 2e5t 2e2t − e5t

)(
α

β

)
=

(
−e2t − e2t

2e5t e5t

)(
α

β

)
=

(
−(α+ β)e2t

(2α+ β)e5t

)
whereas

ϕBt ◦ h(x0) =

(
e2t 0

0 e5t

)(
−1 − 1

2 1

)(
α

β

)
=

(
e2t 0

0 e5t

)(
−α− β
2α+ β

)
=

(
−(α+ β)e2t

(2α+ β)e5t

)
Both flows are the same!

6. Consider the system

X ′ =

(
a b

b a

)
X

Sketch the region in the a-b plane where this system has different types of cononical forms.
Find these canonical forms. Show the corresponding regions on the determinant-trace plane.

The characteristic equation is

0 = det(A− λI) = (a− λ)2 − b2 =⇒ a− λ = ±b

so that eigenvalues are a ± b. If |b| > |a| then the eigenvalues are negative and positive,
and the flow is a saddle with canonical form

(
a+b 0
0 a−b

)
. If a > |b| then both eigenvalues are

positive, and the flow is an unstable improper node. If a < −|b| then both roots are negative
and the flow is a stable improper node. Along a = |b| > 0 roots are zero and positive, thus
flow is an “unstable brush” with canonical form

(
a 0
0 0

)
. Along a = −|b| < 0 the roots are

zero and negative, thus flow is a “stable brush.” If b = 0 then the node is a proper node
with canonical form

(
a 0
0 a

)
. At a = b = 0 all points are rest points with canonical form

(
0 0
0 0

)
.

If det = a2 − b2 < 0 then roots are opposite signe and the solution is a saddle. If det > 0
then the solution is a node, unstable if tr > 0 and stable if tr < 0. If det = 0 then one root
is zero and the other has the sign of a
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7. Sketch the phase line and the bifurcation diagram corresponding to the family of differential
equations with parameter a. Find all equilibrium solutions and determine whether they are
sinks, sources or neither.

x′ = x2 + ax+ 1

The roots are − 1
2a ±

1
2

√
a2 − 4. Thus bifurcation occurs at a = ±2. Stable and unstable

nodes split as |a| > 2 increases. When |a| > 2 the left rest point is stable and the right is
unstable. For |a| < 2 there are no rest points. here is a typical phase line:

Plotting the bifurcation diagram we get solving for a = −(1 +x2)/x. The curves locate the
rest points at given a.
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8. Consider the harmonic oscillator equation with parameters c ≥ 0 and k > 0

x′′ + cx′ + kx = 0.

(a) For which values of c and k does the system have complex eigenvalues? real and
distinct eigenvalues? Repeated eigenvalues? identify the regions in the ck-plane where
the system has similar phase phase portraits.

(b) In each of the cases in (a), sketch the graph showing the motion of the mass when
the mass is released from an initial position with x = 1 and zero velocity and from an
initial position with x = 0 and unit velocity.

Put x′ = y to get system (
x

y

)′
=

(
0 1

−k − c

)(
x

y

)
The characteristic equation is

0 = det(A− λI) = −λ(−c− λ) + k = λ2 + cλ+ k =⇒ λ =
−c±

√
c2 − 4k

2

so that the roots are complex conjugate, repeated or real and distinct depending on whether
c2 − 4k is negative, zero, or positive, resp. In the ck-plane

If the roots are complex, the spring system is underdamped and the solution from either
condition oscillates infinitely often. If the roots are repeated the system is critically damped.
If the roots are real distinct, they are both negative and the system is overdamped. In the
critically and overdamped cases, the solution may overshoot x = 0 at most once. However,
with the given initial conditions, in these cases the solution returns to x = 0 monotonically.

e.g., for an overdamped example c = 5 and k = 4. then λ = −4,−1 so the general solution
is

X(t) = c1e
−t
(

1

−1

)
+ c2e

−4t
(

1

−4

)
Thus with initial conditions X(0) =

(
1
0

)
or
(
0
1

)
the solutions are

X(t) =
4

3
e−t
(

1

−1

)
− 1

3
e−4t

(
1

−4

)
; X(t) =

1

3
e−t
(

1

−1

)
− 1

3
e−4t

(
1

−4

)
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For the critically damped example c = 4 and k = 4. then λ = −2,−2 so the general solution
is

X(t) = c1e
−2t
(

1

−2

)
+ c2e

−2t
(

t

1− 2t

)
Thus with initial conditions X(0) =

(
1
0

)
or
(
0
1

)
the solutions are

X(t) = e−2t
(

1

−2

)
+ 2e−2t

(
t

1− 2t

)
; X(t) = e−2t

(
t

1− 2t

)
.

For the overdamped example c = 2 and k = 4. then λ = −1±
√

3i so the general solution is

X(t) = c1e
−t
(

cos(
√

3t)

− cos(
√

3t)−
√

3 sin(
√

3t)

)
+ c2e

−t
(

sin(
√

3t)√
3 cos(

√
3t)− sin(

√
3t)

)
Thus with initial conditions X(0) =

(
1
0

)
or
(
0
1

)
the solutions are

X(t) = e−t
(

cos(
√

3t) + 1√
3

sin(
√

3t)

−(
√

3 + 1√
3
) sin(

√
3t)

)
; X(t) =

1√
3
e−t
(

sin(
√

3t)√
3 cos(

√
3t)− sin(

√
3t)

)
.

The graphs of the solutions beginning from x = 1 and x′ = 0 for over/critically/under
damped are green/blue/red as spring constant is constant k = 4 and the drag is reduced
c = 5 to 4 to 2.

For the same constants, the graphs of solutions beginning with x = 0 and x′ = 1 for
over/critically/under damped are different colors red/blue/green

9. Find the general solution. Show that there is a unique periodic solution. Find the Poincaré
Map ℘ : {t = 0} → {t = 2π} and use it to verify again that there is a unique 2π - periodic
solution.

x′ − x = cos t.
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Using integrating factors we find(
e−tx

)′
= e−t(x′ − x) = e−t cos t

so

x(t) = etx0 +

∫ t

0

et−s cos s ds = etx0 +
1

2
(et − cos t+ sin t)

In order that this be periodic, we need exponential terms to cancel, which happens if
x0 = − 1

2 . To see this solution is unique, since et is nonzero we may suppose that it has the
form

y(t) = etf(t) +
1

2
(et − cos t+ sin t).

Since it satisfies the ODE we compute

0 = y′ − y − cos t = etf ′(t)

from which follows f ′ = 0 so f(t) = c, a constant. Thus all solutions have this form.

The Poincaré map ℘(x0) is the value of the solution with x(0) = x0 at time t = 2π. Thus

℘(x0) = e2πx0 +
1

2

(
e2π − cos(2π) + sin(2π)

)
= e2πx0 +

1

2
(e2π − 1)

A solution is 2π periodic iff x0 = ℘(x0). Solving this equation we find the only solution is

x0 = −1

2

which corresponds to the only periodic solution.

10. Find the general solution of X ′ = AX. Assume there is a matrix T such that

T =

(
1 − 1

− 3
2 1

)
; T−1AT =

(
−3 0

0 2

)
.

We see that the matrix T diagonalizes the system. The columns of T are eigenvectors with
corresponding diagonal elements of T−1AT the eigenvalues , so that the general solution is

X(t) = c1e
−3t
(

1

− 3
2

)
+ c2e

2t

(
−1

1

)
.

11. Let A be a 2× 2 real matrix. Suppose f(x) = Ax : R2 → R2 is onto. Then A is invertible.

To show that A is invertible, we shall construct a matrix such that AB = I. Since f(x) = Ax
is onto, there are vectors V1 and V2 such that AV1 =

(
1
0

)
and AV2 =

(
0
1

)
. Let B be the

matrix whose columns are V1 and V2. Thus

AB = A(V1;V2) = (AV1;AV2) =

(
1 0

0 1

)
.

It follows that B = A−1. To see this, we have det(AB) = det(A) det(B) = det(I) = 1 so
that det(A) 6= 0 and so A−1 can be given by the formula

A−1 =
1

det(A)

(
d − b
−c a

)
where A =

(
a b

c d

)
.

By premultiplying AB = I by A−1 we find A−1AB = IB = B = A−1.
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12. Let A and B be 2× 2 real matrices. Show det(AB) = det(A) det(B).

This one is just a computation for the 2× 2 case. Letting

A =

(
a b

c d

)
and B =

(
e f

g h

)
we have

det(A) = ad− bc; det(B) = eh− fg

so
det(A) det(B) = (ad− bc)(eh− fg) = adeh− adfg − bceh+ bcfg.

On the other hand

AB =

(
ae+ bg af + bh

ce+ dg cf + dh

)
.

Thus

det(AB) = (ae+ bg)(cf + dh)− (af + bh)(ce+ dg)

= acef + adeh+ cbfg + bdgh− acef − adfg − bceh− bdgh
= adeh+ bcfg − adfg − bceh

so is equal to det(A) det(B).
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