Math 544 § 1.	First Midterm Exam	Name:
Treibergs		Oct. 26, 1994

This is a closed book test. No books, papers, calculators. There are [60] total points.

1	/15
2.	/15
3	$_{15}$
5.	/15
Total	/60

- 1. Solve the equation $2yu_x + u_y = 1$ with the condition $u(x, 0) = e^x$.
- 2. Show that disturbances propagate at finite speed in the wave equation. Let $u(x,t) \in C^2((-\infty,\infty) \times [0,\infty))$ be a solution of

(P.D.E.)
$$u_{tt} - c^2 u_{xx} = 0,$$
 for $-\infty < x < \infty, 0 \le y;$
(I. C.) $u(x,0) = f(x),$ $u_t(x,0) = g(x),$ for $-\infty < x < \infty;$

Find the solution to this problem. Assuming f(x) = g(x) = 0 if |x| > 1, show that u(x,t) = 0 for |x| > 1 + ct.

3. Let c, h be positive constants and f(x) and g(x) be C^2 functions of compact support. Consider the initial value problem for the telegrapher's equation

(P.D.E.)
$$u_{tt} = c^2 u_{xx} - hu,$$
 for $-\infty < x < \infty, 0 \le t;$
(I. C.) $u(x,0) = f(x),$ $u_t(x,0) = g(x),$ for $-\infty < x < \infty.$

Show that a solution $u(x,t) \in C^2((-\infty,\infty) \times [0,\infty))$ is unique. Hint: Consider the function

$$E(t) = \int_{-\infty}^{\infty} u_t^2(s,t) + c^2 u_x^2(s,t) + h u^2(s,t) \, ds.$$

4. Consider the problem of finding $u(x,t) \in \mathcal{C}^2((-\infty,\infty) \times [0,\infty))$ so that

(P.D.E.)
$$u_{xx} + u_{xy} = 0,$$
 for $-\infty < x < \infty, 0 \le y;$
(I. C.) $u(x,0) = f(x),$ $u_y(x,0) = g(x),$ for $-\infty < x < \infty.$

- (a) What type is this partial differential equation?
- (b) Find a change of variables to reduce this equation to normal form.
- (c) State what it means for this problem to be well posed.
- (d) Determine whether this problem is well posed. Assume that $f(x) \in C^2$ and $g(x) \in C^1$ but are otherwise arbitrary functions.