Math 5470 § 1. Second Midterm Exam Name: Golutions
Treibergs Mar. 21, 2024

1. Consider the differential equation. Find the general solution. Find the Poincaré map for
27 periodic solutions. Is there a 2m-periodic solution? Why? = (14+sint)z+ 2.

This is a linear equation. Multiply by the integrating factor

d
|

Integrating with x(0) = o where zg is any real gives

e—t+costx} — €_t+COSt[i‘ _ (1 + sint)a;] — 2€—t+cost

t
€7t+costx(t) —exg = 2/ efercoss ds
0
so the general solution is
t
x(t) — €t+1_COSt$0 4 Qet—cost/ e—s+coss ds.
0

The Poincaré map determines where an initial point xy evolves under the flow in one period.
Here

2
p<x0) = x(Qﬂ') = 627T:E0 + 2271 / e SToss go
0

A 27 periodic solution returns to its starting point, or satisfies the fixed point equation
x* = p(z*). In this case, solving we find the fixed point to be

— 2
2¢2m 1 /
* —s+4cos s
= — e ds.
2
1 —e*™ 0

Thus the solution through the fixed point is a 27 periodic solution.

One notes that p(xg) is a linear function of xq of slope €™ so it crosses the line y = = at
exactly one point. Hence the periodic solution is unique. Moreover ¢/(z*) = 2™ > 1, so
that the periodic solution through z* is unstable.

2. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) STATEMENT: A periodic orbit of the predator prey system & = (1 —y), y = y(z — 1)
is orbitally asymtotically stable.
FALSE.
All trajectories of the predator prey system are periodic since there is a conserved
quantity G(z,y) = ¢ —Ilnx +y — Iny. T rajectories are level sets which are concentric
ovals. Thus none of the periodic orbits is attractive since nearby orbits don’t ap-
proach them. Thus the orbits are not orbitally attractive. However, they are orbitally
Liapunoff stable.

(b) STATEMENT: Consider the C? planar system i = f(z) with rest point f(z*) = 0. If all
eigenvalues of the Jacobian df (2*) satisfy A\; < 0 then z* is Liapunov stable.
FALSE.
The asymptotic stability of a rest point of the nonlinear system can only be deduced
if e A; < 0 for all eigenvalues of the Jacobian df (z*). Without extra conditions on
f (such as reversibility) the condition A\; < 0 is inconclusive. For example the origin
is unstable for & = 23, § = y3, but the Jacobian vanishes. It is false even for linear
system & =y, y = 0.



(¢c) STATEMENT: There are no periodic orbits of the system
&= —dad — 229, ¥ = —22%y — 1293
TRUE.
Many ways to see it. It is a gradient system 2 = —VV(z) where V(z,y) = z* +
22y% + 3y* so all trajectories head to the origin. Or by Dulac’s Criterion (Bendixson’s
Negative Criterion) with g(z,y) = 1, since div g(x,y) f(z,y) = —142? — 38y? which is
negative except at the origin, there are no closed orbits.

3. Find the values of the parameter a where bifurcations occur. Describe the nature of the
bifurcations. Sketch the phase plane for various a’s.

T =1y
j=a’-y—a

The critical points are where 0 = 2 = y and 0 = 5 = 22 — y — a = 22 — a. Thus there are
no rest points when a < 0 and (—+/a,0) and (++/a,0) when a > 0. Thus the bifurcatiobn
occurs at @ = 0 and is of saddle/node type. This is seen by computing the linearizations at
the rest points. The Jacobian is

2

0 1 0 1
J(z,y) = ) J(i\/aa 0) = m
2z —1 +2y/a -1

At (—+/a,0) the determinant is A = 2y/a > 0 and trace is 7 = —1 < 0. In fact 72 — 4A =
1 — 8y/a is positive for 0 < a < 1/64 and negative for a > 1/64. Thus this rest point is a
stable node for 0 < a < 1/64 and a is a stable spiral for all a > 1/64. The rest point persists
and remains stable as a increases through 1/64 so this is not considered a bifurcation point,
even though the rest point switches from node to spiral. These are the same in the sense of
topological conjugatcy. At the other rest point (y/a,0) the determinant is 72 — 4A < 0 so
that this is a saddle node for all a > 0.

The plots of isoclines for a = —1,0, 1. Rest points at the intersections of the parabola and
horizontal line with y < 0 above and § < below the parablas.
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The figures are “Slopes” plots for a = —1,0,.015, 1.

4. Prove that there is a nontrivial periodic solution”

T=1y

g—x+(1—2" =2y

The rest points are at 0 =i =y and 0 = ¢ = —x + (1 — 2% — 2y?)y = —z. s0 (0,0) is the

22 4+ y2. Then

only rest point. Let us show that there is an invariant annulus R; < 22 +y? < Ry. Let

p

2 + 2y

p=

22y + 2y(—x + (1 — 2 — 2°)y)
2(1 — 2% — 2y%)y?

Hence

21— 20 —2P)y” < = 2(1 —” = 2°)y” < 2(1 — 2” — )y

< 2% +y? <1} is a closed

1

2

{

24+y?=1. Thus A4

and p <0if z

1

2
forward invariant annulus without rest points. By the Poincaré Bendixson Theorem there

is nontrivial limit cycle (periodic orbit) in A.

Thus p > 0 if 22 4+ y2 =



(a) What bifurcation occurs in the equation as the parameter p varies and why?

T=1y
g—x+(a®+y° - py

(0,0) is the only rest point for all u. One observes that the circle 2% + y? = p is an
invariant cycle for p > 0.

Putting p = 22 + 2, since
p=2wi + 2y = xy —yz + (2 +y° — p)y® = (p — Py’

for p we have that p = 0 is a single stable rest point for 4 < 0 and p = 0 an unstable
and p = p a stable rest points when p > 0. Thus this system undergoes a subcritical
Hopf Bifurcation as p increases through zero.

(b) Two fireflies flash according to the equations. Do they synchronize? and if so, at what
frequency? Derive any formulas you use.

91 =3+ sin(92 — 91)
ég =1+ 3Sin(01 — 92)

Put ¢ = 6; — 05. Then

9=3-1—(3+1)sinp=2—4sinp = f(p)
f() has a zeros at

1 . . T wx O

— = Sln SO = — Oor = —,

g ~ Y 7T T

©* is stable since f(p) > 0 for ¢** — 27 < p < ¢* and f(p) < 0 for p* < p < P**.
Thus the fireflys synchronize since ¢ — ¢* as t — oc.

Thus the compromise frequency is the lmiting frequency of 6; (or 62 ) where
1 5

* d * : * * : *
w :£91=3—|—sm(92—91):3—81n<p :3—525.



