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This talk “Hartman-Grobman Theorem"” was originally presented on

overhead slides to my Math 6210-1 in 2002. These Beamer slides are
developed from those slides.



o Carmen Chicone, Ordinary Differential Equations with Applications,
Texts in Applied Mathematics 34, Springer, New York, 1999.

@ D. Grobman, Homeomorphisms of systems of differential equations,
(Russian), Dokl. Akad., Nauk. 128, (1959) 880-881.

@ Philip Hartman, A Lemma in the theory of structural stability of
differential equations, Proc. Amer. Math. Soc., 11 (1960) 610-620.

o Philip Hartman, Ordinary Differential Equations, 2nd. ed., SIAM
Classics in Applied Mathematics 38, Society for Industrial and
Applied Mathematics, Philadelphia, 2002; reprinted from 2nd. ed.
Birkhauser 1982; reprinted from original John Wiley & Sons, 1964.

This argument follows Chicone, who simplifies Hartman's proof. Details
are very readable in Hartman's text. The argument in Perko and Liu,
although based on the same idea, is a little harder and less transparent.
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Take an open set E C R", xg € E, f € C(E,R") such that f(xg) = 0.
Let

A = Df[x].
Assume A is hyperbolic:

ReX #£0 for all eigenvalues of A.

Consider the initial value problem

{y = f(y);
y(0) = x.

Let the solution be denoted (t, x).



6. Change to Good Coordi

Lemma (1.)

Let A be a real hyperbolic matrix. There is a linear change of variables
that induces a splitting into stable and unstable spaces R" = Es @ &, so

that in the new variables
_[As 0
= (7 )

and a constant o« > 0 so that for t > 0,

|etAX5‘ < e_Oét|xs,;

|e—tAXu| S e—at|Xu|;

We have written xs = Psx, x, = Pyx where Ps : R" — & and
P, :R" — &, are the orthogonal projections.




Let a > 0 so that |[Re\| > « for all eigenvalues of A. There is a real
invertible change of variables Py = x that splits R” into stable and
unstable spaces and puts the matrix into Real Canonical Form

J1 0 0 Ri Ii 0
4 0 _j2 o --- 0 R,' /,'
PIYAP= g o 4 ...|=D+NJi=|

0 Ri

where R; = )\; and I; = 1 for real eigenvalues and Ry = (_abkk g"k) and

I, = ((1] 2) for conjugate pairs of complex eigenvalues A\, = a, + ibx and
D is block diagonal of all R;’s. Then change variables Qz = y by

Q = diag[S1, S, . . .| block diagonal with S; = diag[1, 8,82, ...] for each
real eigenvalue block J; of and S; = diag][1, 1, §,4, 92,62, ...] for each
complex block J;. Then in the z variable, the matrix has become

“1p—1 . o As 0
QP APQ—D+5N—<0 A,



By choosing > 0 small enough, we may arrange that
Red < —a — ||dN|| and  Rex > a+ ||[0N]||

for all eigenvalues A of As and k of A,. Hence, for t > 0,

|etAs t(Ds+0Ns

zs| = e )zs|
— |etDset6st|

tDs

A

oN
e 111 |zs]

o taH[IBN]) gt 5Ns

IN

”|Zs|
— e—talzs|

and

—t(Dy+dN,

e Pz =|e )z,|

— ’e—tDue—t(SNuZu|
< Jle™ ™| [l Mo |z,

< ot [N gEloNl| | |

=e z,]. [



9. Localize the Flow.

Let Ds(x0) = {x € R" : |[x — xp| < d} denote the closed ball.

Lemma (2)

Let E C R" be open, xo € E and Dy(xo) C E for some d > 0. Let
f € CL(E,R") such that f(xo) = 0. Let ¢(t, x) denote the solution of

y =f(y);
y(0) = x.
Then there is 0 < c1(f, d, xp) < 1 so that for all 0 < di < d and

x € D¢, g, (x0), the solution p(t,x) exists for all t € [—1,1] and satisfies
o(t, x) € Dy, (x0) whenever (t,x) € [-1,1] X Dg, (x0)-




WLOG xo = 0. Let M = sup,cp,(x) | Df (x)||. Hence if x € Dy, for the
function g(t) = f(tx),
1
/ g'(s)ds
0

1
< / IIDf (sx)|| |x| ds < M|x|.
0

[F()] = lg(1) — g(0)] =

<

< ‘ /0 D (s s

Claim: ¢; = e M works. If x € D¢, q, then

()] < x| + ] / " F(o(s.x)) ds

t
< |x| + /\/// |o(s, x)| ds.
0
By Gronwall's Inequality,
lp(t,s)] < |x|eMt < cydyeMtl = gy elltI=1IM

Thus for |t| <1 the solution must exist since it stays within Dy, . O



For u € C*(E,R"), the norms

Let ¢ € C*°([0, c0) such that
tllesey = sup [u(x); 0<C(t)<1,((t)=1fort<1,
C(t)=0fort>2and |C'(t)| <2. A
cutoff function (or bump function) is
Ba(x) = ¢ (4|x]). Thus By € C=(R")

lullergy = llullcocey + || Dullco(e)-

such that
14 1, if0<|x|<d
C(x) Ba(x) = {0’ i x| > 2d.
2
— 1DBa()| < 5
1

Figure: Cutoff Function.



12. Cut Off Flow to Local

Lemma (3)

Let E C R" be open, xo € E and Dy(xo) C E for some d > 0. Let
f € CY(E,R") such that f(xp) = 0 and A = Df(xg). Let o(t,x) denote

the flow by
y =1f(y);
y(0) = x.

Let di < d and ¢; from Lemma 2. For any a € (0, 1), there is d» so that
0 < 2d» < c1d; and p € CH(R",R™) so that p(xo) = 0, Dp(x0) = 0,
[pllcr(rny < o and

p1(x) = o(1,x) = e*(x — x0) + p(x)

fror all x € Dg,(x0).




WLOG xg = 0. Put B = e”. Use the variation equation to estimate
L(t) = Dxp(t, x).

L(0) = 1.
But ¢(t,0) = 0 so that for all t, L = AL so L(1) = e'A/ = B. Thus

Dy1(0) = B.
Cut off the nonlinear part of the flow to get

{L = Df (¢, x))[L],

p(x) = B (x) (p1(x) — Bx).
p(0) = ¢1(0) = 0. Since B4, = 1 in a neighborhood of 0, it follows that
Dp(0) = Dg1(0) — B = 0.

Since ¢ is Cl in x, choose d, so small that 0 < 2d» < ¢1d; and

sup |Dpi(x)—B| <n= .
Xe%l@() | <n 24 16



Thus
1Pl = |Ba| |¢1(x) — Bx| < 1-n|x| < 2nd>

since p(x) = 0 for |x| > 2d>.
We also have a derivative estimate:

|Dp| < |DBg,||¢1 — Bx| 4 |Ba,| |Dp1 — B|

< 2 |x| +1
E— X .
_d277 n
2
< —n-2dr+1-n=>5n.
d>
Thus

lPllermny < l[Pllcogeny + 1 DPllcogrny < 2nda + 5 < c. [



15. Inverting T.

Lemma (4)

Let T(x) = Bx + p(x) where B is invertible and p € C}(R".IR") such
that p(0) = 0 and

1
lpllcrwrey £ 7 = s55=7-
(R?) 2B

Then there is T~1 € CY(R",R") such that || T~1|| <2||B7Y.

Proof. It suffices to find a continuous T—1. C! follows from the Inverse
Function Theorem. For all y € R”, solve for x in y = Bx + p(x).
Formulate as a fixed point

x = g(x) =B~y — p(x)).
g(x) is a contraction in R". First, for x,z € R",
p(x) = p(2)] <7Ix — 2|

[p()] = |p(x) = p(0)] < ~Ix — 0] = ~|x|.



Thus

80 — 8(2)] = 1B (p(x) — p(2))
<187 Ip(x) ~ p(2)]
< 1Byl — 2| < 3lx - 2.

Thus iterating with xg = 0, x; = g(0) = B~y and x,11 = g(x»), there
is a unique fixed point

o
x=T y)=x+ > (xit1 — X).
i=0

Hence

_ 1 __ _
T 1(y)!§Z§!B Yyl < 2Byl
i=0



Also writing x; = T_l(yi)v
y1—y2 = B(x1 — x2) + p(x1) — p(x2)
S0

= x| < [B7Hy1 = y2)| + B (p(x1) — p(x2))]
< 1B Mlyr — ya| + 5131 — xal.
Thus, we have an esrimate in terms of itself, a “"GARBAGE TRUCK"
T 1) = T H(y2)l < 21B7lIy1 — yal

the inverse is Lipschitz continuous and 7T : R" — R" is a
homeomorphism.



To check that T—! is C! we check that the differential of T is invertible
at any point. Thus, for any y € R" and corresponding x = T~1(y),

DT(x) = B+ Dp(x) = B(I + B~ Dp(x)).

It is invertible because ||B~1Dp(x)| < |[B~||y < 3: in fact, the inverse
of | + M where ||[M|| <  is given by the convergent series

oo

(I+Mmt=> (-1

k=0

Thus the inverse function T~1(y) is C! in a nelghborhood of y by the
Inverse Function Theorem and DT ~1(y) = (DT(x))~! O



19. Hartman-Grobman Theor:

Theorem (Hartman Grobman)

Let E C R" be open, xo € E and Dy(xo) C E for some d > 0. Let

f € CY(E,R") such that f(xp) = 0 and A = Df(xo) is hyperbolic. Then
there are open neighborhoods xo € U and 0 € V' and a homeomorphism
H : U — V such that the flow ¢(t, x) of the equation

{y = f(y),
y(0) = x

is topologically flow equivalent to the flow of its linearization e*Ax:
H(p(t, x)) = e”H(x)

for all x € U and |t| < 1.

Combining with the theorem for linear flows, this implies that two
hyperbolic systems are locally topologically flow equivalent if and only if
their stable spaces have equal dimensions.



The proof is to show that the time-one maps are locally topologically
conjugate and then recover the flow equivalence. The proof will be
completed by Lemmas 5-8.

WLOG xp = 0. We assume dim&; > 1 and dim &e > 1 throughout. The
remaining cases are similar and simpler. Using Lemma 1, we change to

good coordinates. Let
A
A (e 0
B=e¢e"= < 0 eA”) .

T(x) = Bx+ p(x)

asin Lemma 3, so T = ¢y in Dg,. We seek a homeomorphism
H :R" — R" such that

Define

HoT = BoH.



We begin with a lemma that produces a candidate for the topological
conjugacy.

Let A be hyperbolic and B = e*. Let p € C1(R",R") satisfy
Ipller < v =3|B7Y|. Let T(x) = Bx + p(x). Then there is a unique
continuous H : R" — R" such that for all x € R",

H(T(x)) = BH(x). (1)

Define the Banach space of bounded continuous maps:
X ={heCOR",R") : ||Aco < o0}

We shall look for H(x) = x + h(x) where h € X.



Assume that we are in good coordinates and have o > 0 as given by
Lemma 1. Using H(x) = x + h(x), and T(x) = Bx + p(x), (1)
T(x)+ h(T(x)) =BT(x)

becomes
Bx + p(x) + h(T(x)) = Bx + Bp(x)
K(T(x)) = Bh(x) — p(x).

Split the equation into stable and unstable parts

hs(T(x)) = e*hs(x) — ps(x), €’ is a contraction on &;
hy(T(x)) = e*hu(x) — pu(x), e’ is an expansion on &,;

KEY TRICK: invert the second equation to make it a contraction too!



By Lemma 4, we may use the continuously differentiable inverse 7!

{hs(x)=eAhs<T-1(x))—ps<T-1(x)) = G(MC)

hu(x) = e AR (T()) + e Apu(x) = Gu(h)(x):

We will solve this functional equation using the Contraction Mapping
principle in X.

Using the norm on x € R”

X[ m = max(|xs|, [xul)

and corresponding sup-norm on h € X

[hllx = sup [h(x)|m
x€eR"

we show that (2) is a contraction.



Assume that we are in good coordinates and have o > 0 as given by
Lemma 1. For maps g, h € X, we have

16(8) = G(h)lm < max (|e™g(T(x) — e h(T1 ().
e Mgy (T(x)) = e M hy(T())])

< e % max (Hgs - hSHCO(R")’ lgu — hUHCO(R"))
<e g —hlm

Thus, by the Contraction Mapping principle, there is a map h € X
satisfying (2). O



25. Generalize the Constru

We recover Lemma 5 by taking p = 0 in the following. It will be used to
construct an inverse to H from Lemma 5.

Lemma (6)

Let A be hyperbolic, B = e” and let o > 0 be the constant from
Lemma 1. Let p,q € C}(R",R") satisfy
pllcr =~ < min (3|87, e* — 1)
and
lalle: < 3187
Let T(x) = Bx + p(x) and S(x) = Bx + q(x). Then there is a unique

continuous G : R™ — R" such that for all x € R”",

T(G(x)) = G(S(x))- (3)

V.

The proof is very similar to that of Lemma 5 so will not be given here.



26. The map H from lem

Lemma (7)
Let A be hyperbolic and B = e?. Let p € C1(R",R") satisfy

Ipller = < min (3|B7Y],e* - 1).

Let T(x) = Bx + p(x). Then the map H : R" — R" from Lemma 5
satisfying
Ho T(x) = BH(x)

for all x € R" is a homeomorphism.

Proof. The idea is to construct a continuous inverse K € C°(R", R")
such that Ho K =1 and Ko H = /. Taking p =0 in Lemma 6, there is
k € X such that K(x) = x + k(x) satisfies

T(K(y)) = K(By).



But Ho T = BH, thus for all y € R"
HoK(By) =HoToK(y)=BHoK(y). (4)

Thus G = H o K satisfies (3) in Lemma 6 with p = g = 0. Thus there is
v € X such that for all y € R",

y+k(y) +hly +k(y)) = Ho K(y) = y + v(¥)-
But G = I also satisfies (4). By uniqueness,

HoK=1.



Similarly, by Lemmas 5 and 6,
KoHo T(x)=KoBH(x)=ToKoH(x). (5)

This time, K o H satisfies (3) of Lemma 6 with ¢ = p. Thus there is
w € X such that for all x € R”,

x + h(x) + k(x + h(y)) = K o H(x) = x + w(y).
But / also satisfies (5). Thus by uniqueness,

KoH=1. LI



29. Construct Flow Equivale

Lemma (8)

Let d» > 0 be chosen so small in Lemma 3 such that p satisfies
conditions of Lemma 7. Let H be the map constructed in Lemma 5
which by Lemma 7 is a topological conjugacy

Ho T = eH.
For x € Dy, this is a topological conjugacy between time-one flows:
H o p1(x) = e*H(x).

Then the map .
H(x) = f3 e " H(p(0,x)) do

is a local topological flow equvalence: for all (t,x) € [—1,1] x Dg,:
H(p(t,x)) = " H(x).

Moreover H = 'H on Dy, .




Let's do the case x € Dy, and t > 0. The case t < 0 is similar. Use the
semigroup property ¢, © ¥t = Qoit,

1
e M Hp, = / e Me " Ho g, 0@ do
0
1
= / e (DAL 6 vy 1y do.
0
Change variables T =0+t — 1, use B = e” and Ho ¢; = BH.
t
_ / e~ IAH 6 o1, dr
t—1
t
= / e ™AB 'Ho 00, dr
t—1

t
= / e "He, dr
t—1



Split integral and change variables in the first integral 7 =0 — 1,

0 t
e AHpr = / e ™Hy, dr + / e " Hop, dr
t—1 0

1 t
/ e e*Hyp,_1 do + / e "AHy, dr
t 0

1

t
e_aAHcpl 0 po_1do + / e_TAHcpT dr
0

1

—

t
e "*Hyp, do + / e Hy, dr
0

1
e ™ Hep, dr

I
xS

Thus H o @1 = e»H. When t = 1, then H satisfies H o T = BH. By
Lemma 5 uniqueness, H = H. Thus, H is a local homeomorphism. [



Thanks!






