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2. The Grobman-Hartman Theorem

The URL for these Beamer Slides: “Hartman-Grobman Theorem”

http://www.math.utah.edu/~treiberg/M6414HartmanGrobman.pdf

This talk “Hartman-Grobman Theorem” was originally presented on
overhead slides to my Math 6210-1 in 2002. These Beamer slides are
developed from those slides.
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This argument follows Chicone, who simplifies Hartman’s proof. Details
are very readable in Hartman’s text. The argument in Perko and Liu,
although based on the same idea, is a little harder and less transparent.
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5. Setup.

Take an open set E ⊂ Rn, x0 ∈ E , f ∈ C1(E , Rn) such that f (x0) = 0.
Let

A = Df [x0].

Assume A is hyperbolic:

<eλ 6= 0 for all eigenvalues of A.

Consider the initial value problem{
ẏ = f (y);

y(0) = x .

Let the solution be denoted ϕ(t, x).



6. Change to Good Coordinates.

Lemma (1.)

Let A be a real hyperbolic matrix. There is a linear change of variables
that induces a splitting into stable and unstable spaces Rn = Es ⊕ Eu so
that in the new variables

A =

(
As 0
0 Au

)
and a constant α > 0 so that for t ≥ 0,

|etAxs | ≤ e−αt |xs |;
|e−tAxu| ≤ e−αt |xu|;

We have written xs = Psx, xu = Pux where Ps : Rn → Es and
Pu : Rn → Eu are the orthogonal projections.



7. Proof of Lemma 1.

Let α > 0 so that |<eλ| > α for all eigenvalues of A. There is a real
invertible change of variables Py = x that splits Rn into stable and
unstable spaces and puts the matrix into Real Canonical Form

P−1AP =


J1 0 0 · · ·
0 J2 0 · · ·
0 0 J3 · · ·
...

...
...

. . .

 = D + N; Ji =


Ri Ii 0 . . .
0 Ri Ii . . .

0 0 Ri
. . .

...
...

...
. . .


where Ri = λi and Ii = 1 for real eigenvalues and Rk =

( ak bk
−bk ak

)
and

Ik =
(1 0
0 1

)
for conjugate pairs of complex eigenvalues λk = ak ± ibk and

D is block diagonal of all Ri ’s. Then change variables Qz = y by
Q = diag[S1,S2, . . .] block diagonal with Si = diag[1, δ, δ2, . . .] for each
real eigenvalue block Ji of and Si = diag[1, 1, δ, δ, δ2, δ2, . . .] for each
complex block Ji . Then in the z variable, the matrix has become

Q−1P−1APQ = D + δN =

(
As 0
0 Au

)
.



8. Proof of Lemma 1. +

By choosing δ > 0 small enough, we may arrange that

<eλ < −α− ‖δN‖ and <eκ > α + ‖δN‖
for all eigenvalues λ of As and κ of Au. Hence, for t ≥ 0,

|etAs zs | = |et(Ds+δNs)zs |
= |etDs etδNzs |
≤ ‖etDs‖ ‖etδN‖ |zs |
≤ e−t(α+‖δN‖)et‖δNs‖|zs |
= e−tα|zs |

and

|e−tAuzu| = |e−t(Du+δNu)zu|
= |e−tDue−tδNuzu|
≤ ‖e−tDu‖ ‖e−tδNu‖ |zu|
≤ e−t(α+‖δN‖)et‖δNu‖|zu|
= e−tα|zu|.



9. Localize the Flow.

Let Dδ(x0) = {x ∈ Rn : |x − x0| ≤ δ} denote the closed ball.

Lemma (2)

Let E ⊂ Rn be open, x0 ∈ E and Dd(x0) ⊂ E for some d > 0. Let
f ∈ C1(E , Rn) such that f (x0) = 0. Let ϕ(t, x) denote the solution of{

ẏ = f (y);

y(0) = x .

Then there is 0 < c1(f , d , x0) < 1 so that for all 0 < d1 ≤ d and
x ∈ Dc1d1(x0), the solution ϕ(t, x) exists for all t ∈ [−1, 1] and satisfies
ϕ(t, x) ∈ Dd1(x0) whenever (t, x) ∈ [−1, 1]× Dd1(x0).



10. Proof of Lemma 2.

WLOG x0 = 0. Let M = supx∈Dd (x0) ‖Df (x)‖. Hence if x ∈ Dd , for the
function g(t) = f (tx),

|f (x)| = |g(1)− g(0)| =
∣∣∣∣∫ 1

0
g ′(s) ds

∣∣∣∣ ≤
≤

∣∣∣∣∫ 1

0
Df (sx)[x ] ds

∣∣∣∣ ≤ ∫ 1

0
‖Df (sx)‖ |x | ds ≤ M|x |.

Claim: c1 = e−M works. If x ∈ Dc1d1 then

|ϕ(t, x)| ≤ |x |+
∣∣∣∣∫ t

0
f (ϕ(s, x)) ds

∣∣∣∣ ≤ |x |+ M

∫ t

0
|ϕ(s, x)| ds.

By Gronwall’s Inequality,

|ϕ(t, s)| ≤ |x |eM|t| ≤ c1d1e
M|t| = d1e

(|t|−1)M

Thus for |t| ≤ 1 the solution must exist since it stays within Dd1 .



11. Norms and Cutoff Functions.

For u ∈ C1(E , Rn), the norms

‖u‖C0(E) = sup
x∈E

|u(x)|;

‖u‖C1(E) = ‖u‖C0(E) + ‖Du‖C0(E).

Figure: Cutoff Function.

Let ζ ∈ C∞([0,∞) such that
0 ≤ ζ(t) ≤ 1, ζ(t) = 1 for t ≤ 1,
ζ(t) = 0 for t ≥ 2 and |ζ ′(t)| ≤ 2. A
cutoff function (or bump function) is
βd(x) = ζ

(
1
d |x |

)
. Thus βd ∈ C∞(Rn)

such that

βd(x) =

{
1, if 0 ≤ |x | ≤ d ;

0, if |x | ≥ 2d .

|Dβd(x)| ≤ 2

d
.



12. Cut Off Flow to Localize.

Lemma (3)

Let E ⊂ Rn be open, x0 ∈ E and Dd(x0) ⊂ E for some d > 0. Let
f ∈ C1(E , Rn) such that f (x0) = 0 and A = Df (x0). Let ϕ(t, x) denote
the flow by {

ẏ = f (y);

y(0) = x .

Let d1 ≤ d and c1 from Lemma 2. For any α ∈ (0, 1), there is d2 so that
0 < 2d2 ≤ c1d1 and p ∈ C1(Rn, Rn) so that p(x0) = 0, Dp(x0) = 0,
‖p‖C1(Rn) < α and

ϕ1(x) = ϕ(1, x) = eA(x − x0) + p(x)

fror all x ∈ Dd2(x0).



13. Proof of Lemma 3.

WLOG x0 = 0. Put B = eA. Use the variation equation to estimate
L(t) = Dxϕ(t, x). {

L̇ = Df (ϕ(t, x))[L],

L(0) = I .

But ϕ(t, 0) = 0 so that for all t, L̇ = AL so L(1) = e1·AI = B. Thus
Dϕ1(0) = B.
Cut off the nonlinear part of the flow to get

p(x) = βd2(x) (ϕ1(x)− Bx) .

p(0) = ϕ1(0) = 0. Since βd2 ≡ 1 in a neighborhood of 0, it follows that

Dp(0) = Dϕ1(0)− B = 0.

Since ϕ is C1 in x , choose d2 so small that 0 < 2d2 < c1d1 and

sup
x∈D2d2

|Dϕ1(x)− B| < η =
α

2d1 + 6
.



14. Proof of Lemma 3. +

Thus
|p| = |βd2 | |ϕ1(x)− Bx | ≤ 1 · η|x | ≤ 2ηd2

since p(x) = 0 for |x | ≥ 2d2.
We also have a derivative estimate:

|Dp| ≤ |Dβd2 | |ϕ1 − Bx |+ |βd2 | |Dϕ1 − B|

≤ 2

d2
η|x |+ 1 · η

≤ 2

d2
η · 2d2 + 1 · η = 5η.

Thus

‖p‖C1(Rn) ≤ ‖p‖C0(Rn) + ‖Dp‖C0(Rn) ≤ 2ηd2 + 5η < α.



15. Inverting T .

Lemma (4)

Let T (x) = Bx + p(x) where B is invertible and p ∈ C1(Rn.Rn) such
that p(0) = 0 and

‖p‖C1(Rn) ≤ γ =
1

2‖B−1‖
.

Then there is T−1 ∈ C1(Rn, Rn) such that ‖T−1‖ ≤ 2‖B−1‖.

Proof. It suffices to find a continuous T−1. C1 follows from the Inverse
Function Theorem. For all y ∈ Rn, solve for x in y = Bx + p(x).
Formulate as a fixed point

x = g(x) = B−1(y − p(x)).

g(x) is a contraction in Rn. First, for x , z ∈ Rn,

|p(x)− p(z)| ≤ γ|x − z |

so
|p(x)| = |p(x)− p(0)| ≤ γ|x − 0| = γ|x |.



16. Proof of Lemma 4.

Thus

|g(x)− g(z)| = |B−1(p(x)− p(z))|
≤ ‖B−1‖|p(x)− p(z)|
≤ ‖B−1‖γ|x − z | ≤ 1

2 |x − z |.

Thus iterating with x0 = 0, x1 = g(0) = B−1y and xn+1 = g(xn), there
is a unique fixed point

x = T−1(y) = x0 +
∞∑
i=0

(xi+1 − xi ).

Hence

|T−1(y)| ≤
∞∑
i=0

1

2i
|B−1y | ≤ 2‖B−1‖|y |.



17. Proof of Lemma 4. +

Also writing xi = T−1(yi ),

y1 − y2 = B(x1 − x2) + p(x1)− p(x2)

so

|x1 − x2| ≤ |B−1(y1 − y2)|+ |B−1(p(x1)− p(x2))|
≤ ‖B−1‖|y1 − y2|+ 1

2 |x1 − x2|.

Thus, we have an esrimate in terms of itself, a “GARBAGE TRUCK”

|T−1(y1)− T−1(y2)| ≤ 2‖B−1‖|y1 − y2|

the inverse is Lipschitz continuous and T : Rn → Rn is a
homeomorphism.



18. Proof of Lemma 4. ++

To check that T−1 is C1 we check that the differential of T is invertible
at any point. Thus, for any y ∈ Rn and corresponding x = T−1(y),

DT (x) = B + Dp(x) = B(I + B−1Dp(x)).

It is invertible because ‖B−1Dp(x)‖ ≤ ‖B−1‖γ ≤ 1
2 : in fact, the inverse

of I + M where ‖M‖ ≤ 1
2 is given by the convergent series

(I + M)−1 =
∞∑

k=0

(−1)kMk .

Thus the inverse function T−1(y) is C1 in a neighborhood of y by the
Inverse Function Theorem and DT−1(y) = (DT (x))−1.



19. Hartman-Grobman Theorem.

Theorem (Hartman Grobman)

Let E ⊂ Rn be open, x0 ∈ E and Dd(x0) ⊂ E for some d > 0. Let
f ∈ C1(E , Rn) such that f (x0) = 0 and A = Df (x0) is hyperbolic. Then
there are open neighborhoods x0 ∈ U and 0 ∈ V and a homeomorphism
H : U → V such that the flow ϕ(t, x) of the equation{

ẏ = f (y),

y(0) = x

is topologically flow equivalent to the flow of its linearization etAx:

H(ϕ(t, x)) = etAH(x)

for all x ∈ U and |t| ≤ 1.

Combining with the theorem for linear flows, this implies that two
hyperbolic systems are locally topologically flow equivalent if and only if
their stable spaces have equal dimensions.



20. Proof of the Hartman Grobman Theorem.

The proof is to show that the time-one maps are locally topologically
conjugate and then recover the flow equivalence. The proof will be
completed by Lemmas 5-8.

WLOG x0 = 0. We assume dim Es ≥ 1 and dim Ee ≥ 1 throughout. The
remaining cases are similar and simpler. Using Lemma 1, we change to
good coordinates. Let

B = eA =

(
eAs 0
0 eAu

)
.

Define
T (x) = Bx + p(x)

as in Lemma 3, so T = ϕ1 in Dd2 . We seek a homeomorphism
H : Rn → Rn such that

H ◦ T = B ◦ H.



21. Candidate for the Conjugate of the Time-One Map.

We begin with a lemma that produces a candidate for the topological
conjugacy.

Lemma (5)

Let A be hyperbolic and B = eA. Let p ∈ C1(Rn, Rn) satisfy
‖p‖C1 < γ = 1

2‖B
−1‖. Let T (x) = Bx + p(x). Then there is a unique

continuous H : Rn → Rn such that for all x ∈ Rn,

H(T (x)) = BH(x). (1)

Define the Banach space of bounded continuous maps:

X = {h ∈ C0(Rn, Rn) : ‖h‖C0 < ∞}.

We shall look for H(x) = x + h(x) where h ∈ X .



22. Proof of Lemma 5.

Assume that we are in good coordinates and have α > 0 as given by
Lemma 1. Using H(x) = x + h(x), and T (x) = Bx + p(x), (1)

T (x) + h(T (x)) = BT (x)

becomes
Bx + p(x) + h(T (x)) = Bx + Bp(x)

so
h(T (x)) = Bh(x)− p(x).

Split the equation into stable and unstable parts{
hs(T (x)) = eAhs(x)− ps(x), eA is a contraction on Es ;

hu(T (x)) = eAhu(x)− pu(x), eA is an expansion on Eu;

KEY TRICK: invert the second equation to make it a contraction too!



23. Proof of lemma 5. +

By Lemma 4, we may use the continuously differentiable inverse T−1{
hs(x) = eAhs(T

−1(x))− ps(T
−1(x)) = Gs(h)(x),

hu(x) = e−Ahu(T (x)) + e−Apu(x) = Gu(h)(x).
(2)

We will solve this functional equation using the Contraction Mapping
principle in X .

Using the norm on x ∈ Rn

|x |m = max(|xs |, |xu|)

and corresponding sup-norm on h ∈ X

‖h‖X = sup
x∈Rn

|h(x)|m

we show that (2) is a contraction.



24. Proof of lemma 5. ++

Assume that we are in good coordinates and have α > 0 as given by
Lemma 1. For maps g , h ∈ X , we have

|G (g)− G (h)|m ≤ max
(
|eAs gs(T

−1(x))− eAs hs(T
−1(x))|,

|e−Augu(T (x))− e−Auhu(T (x))|
)

≤ e−α max
(
‖gs − hs‖C0(Rn), ‖gu − hu‖C0(Rn)

)
≤ e−α‖g − h‖m

Thus, by the Contraction Mapping principle, there is a map h ∈ X
satisfying (2).



25. Generalize the Construction of the Map.

We recover Lemma 5 by taking p = 0 in the following. It will be used to
construct an inverse to H from Lemma 5.

Lemma (6)

Let A be hyperbolic, B = eA and let α > 0 be the constant from
Lemma 1. Let p, q ∈ C1(Rn, Rn) satisfy

‖p‖C1 = γ < min
(

1
2‖B

−1‖, eα − 1
)

and
‖q‖C1 < 1

2‖B
−1‖.

Let T (x) = Bx + p(x) and S(x) = Bx + q(x). Then there is a unique
continuous G : Rn → Rn such that for all x ∈ Rn,

T (G (x)) = G (S(x)). (3)

The proof is very similar to that of Lemma 5 so will not be given here.



26. The map H from lemma 5 is a Homeomorphism.

Lemma (7)

Let A be hyperbolic and B = eA. Let p ∈ C1(Rn, Rn) satisfy

‖p‖C1 = γ < min
(

1
2‖B

−1‖, eα − 1
)
.

Let T (x) = Bx + p(x). Then the map H : Rn → Rn from Lemma 5
satisfying

H ◦ T (x) = BH(x)

for all x ∈ Rn is a homeomorphism.

Proof. The idea is to construct a continuous inverse K ∈ C0(Rn, Rn)
such that H ◦ K = I and K ◦ H = I . Taking p = 0 in Lemma 6, there is
k ∈ X such that K (x) = x + k(x) satisfies

T (K (y)) = K (By).



27. Proof of Lemma 7.

But H ◦ T = BH, thus for all y ∈ Rn

H ◦ K (By) = H ◦ T ◦ K (y) = BH ◦ K (y). (4)

Thus G = H ◦ K satisfies (3) in Lemma 6 with p = q = 0. Thus there is
v ∈ X such that for all y ∈ Rn,

y + k(y) + h(y + k(y)) = H ◦ K (y) = y + v(y).

But G = I also satisfies (4). By uniqueness,

H ◦ K = I .



28. Proof of Lemma 7. +

Similarly, by Lemmas 5 and 6,

K ◦ H ◦ T (x) = K ◦ BH(x) = T ◦ K ◦ H(x). (5)

This time, K ◦ H satisfies (3) of Lemma 6 with q = p. Thus there is
w ∈ X such that for all x ∈ Rn,

x + h(x) + k(x + h(y)) = K ◦ H(x) = x + w(y).

But I also satisfies (5). Thus by uniqueness,

K ◦ H = I .



29. Construct Flow Equivalence from Conjugation.

Lemma (8)

Let d2 > 0 be chosen so small in Lemma 3 such that p satisfies
conditions of Lemma 7. Let H be the map constructed in Lemma 5
which by Lemma 7 is a topological conjugacy

H ◦ T = eAH.

For x ∈ Dd2 this is a topological conjugacy between time-one flows:

H ◦ ϕ1(x) = eAH(x).

Then the map
H(x) =

∫ 1
0 e−σAH(ϕ(σ, x)) dσ

is a local topological flow equvalence: for all (t, x) ∈ [−1, 1]× Dd2 :

H(ϕ(t, x)) = etAH(x).

Moreover H = H on Dd2 .



30. Proof of Lemma 8.

Let’s do the case x ∈ Dd2 and t ≥ 0. The case t ≤ 0 is similar. Use the
semigroup property ϕσ ◦ ϕt = ϕσ+t ,

e−tAHϕt =

∫ 1

0
e−tAe−σAH ◦ ϕσ ◦ ϕt dσ

=

∫ 1

0
e−(t+σ)AH ◦ ϕσ+t dσ.

Change variables τ = σ + t − 1, use B = eA and H ◦ ϕ1 = BH.

=

∫ t

t−1
e−(1+τ)AH ◦ ϕ1+τ dτ

=

∫ t

t−1
e−τAB−1H ◦ ϕ1 ◦ ϕτ dτ

=

∫ t

t−1
e−τAHϕτ dτ



31. Proof of Lemma 8. +

Split integral and change variables in the first integral τ = σ − 1,

e−tAHϕt =

∫ 0

t−1
e−τAHϕτ dτ +

∫ t

0
e−τAHϕτ dτ

=

∫ 1

t
e−σAeAHϕσ−1 dσ +

∫ t

0
e−τAHϕτ dτ

=

∫ 1

t
e−σAHϕ1 ◦ ϕσ−1 dσ +

∫ t

0
e−τAHϕτ dτ

=

∫ 1

t
e−σAHϕσ dσ +

∫ t

0
e−τAHϕτ dτ

=

∫ 1

0
e−τAHϕτ dτ

= H.

Thus H ◦ ϕ1 = etAH. When t = 1, then H satisfies H ◦ T = BH. By
Lemma 5 uniqueness, H = H. Thus, H is a local homeomorphism.



Thanks!




