A MONOTONE FUNCTION IS INTEGRABLE

Theorem. Let f be a monotone function on [a,b] then f is integrable on [a,b].

Proof. We will prove it for monotonically decreasing functions. The proof for increasing
functions is similar.

First note that if f is monotonically decreasing then f(b) < f(x) < f(a) for all z € [a,b] so
f is bounded on |a, b].

Denote by P, the partition of [a, b] into n equal intervals.
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Since f is monotonic:
my, = inf{ f(z)|zr—1 < f(z) <z} = f(xp)

My, = sup{f(z)|zr—1 < f(x) <2} = f(ap—1)

Therefore,
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Therefore

(b—a)(f(a) = f(b))
n

By the sequential characterization of integrability, f is integrable on [a, b].
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