
THE INTERMEDIATE VALUE THEOREM

Theorem. Let f be continuous on [a, b] then for any y such that f(a) < y < f(b) or

f(b) < y < f(a) there is a point c ∈ (a, b) such that f(c) = y.

In other words: every point between f(a) and f(b) is an image of a point in (a, b).

Proof. Without loss of generality let us assume f(a) < f(b). Let y be such that f(a) < y <

f(b). We must prove that there exists a c ∈ (a, b) such that f(c) = y.

Claim. There is a sequence of nested sequence of intervals:

[a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ · · · ⊃ [an, bn] ⊃ . . .

such that:

i f(an) < y < f(bn) for all n ≥ 0

ii bn − an = b−a
2n for all n ≥ 0

or we can find a point c such that f(c) = y

Proof of claim. We construct the sequence by induction.

The First Step: Set a0 = a and b0 = b. Then [i] is satisfied by the assumption that f(a) <

y < f(b) and [ii] translates to b0 − a0 = b−a
20 which is also true by the definition of a0, b0.

Induction Hypothesis: Suppose we’ve constructed: a0, a1, . . . , an and b0, b1, . . . , bn such that:

[a0, b0] ⊃ [a1, b1] ⊃ · · · ⊃ [an, bn]

and:

i f(ak) < y < f(bk) for all 0 ≤ k ≤ n

ii bk − ak = b−a
2k for all 0 ≤ k ≤ n

The n + 1-st step: We must construct the n + 1st interval so that the properties still hold.

Let dn = an+bn

2
(the midpoint of the interval [an, bn]). There are three cases and we will

define the next interval accordingly:

f(dn) = y: In this case we’ve found a source for y and we’re done.

f(dn) > y: Define an+1 = an and bn+1 = dn. Since bn+1 < bn we get [an, bn] ⊃ [an+1, bn+1].

We must check:

i f(an+1)
?
< y

?
< f(bn+1)

f(an+1) = f(an) < y by the induction hypothesis, and y < f(dn) = f(bn+1) because

this is the case we’re in.
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ii bn+1 − an+1
?
= b−a

2n+1

bn+1−an+1 = dn−an = an+bn

2
−an = bn−an

2
by the induction hypothesis bn−an = b−a

2n

so bn+1 − an+1 = b−a
2n+1 as we needed to show.

f(dn) < y: Define an+1 = dn and bn+1 = bn. Since an+1 > an then [an, bn] ⊃ [an+1, bn+1]. We

must check:

i f(an+1)
?
< y

?
< f(bn+1)

f(bn+1) = f(bn) > y by the induction hypothesis, and y < f(dn) = f(an+1) because

this is the case we’re in.

ii bn+1 − an+1
?
= b−a

2n+1

bn+1−an+1 = bn−dn = bn− an+bn

2
= bn−an

2
by the induction hypothesis bn−an = b−a

2n

so bn+1 − an+1 = b−a
2n+1 as we needed to show.

¤

This claim shows that either: one of the dns is a source for y, or: we have a nested sequence

of intervals whose length goes to zero. By the nested intervals lemma
∞⋂
i=0

[an, bn] = {c} with

lim
n→∞

an = c = lim
n→∞

bn. Since c ∈ [a0, b0] = [a, b] then f is continuous at c.

In particular, lim
n→∞

f(an) = f(c) and lim
n→∞

f(bn) = f(c). By item [i] f(an) < y for all n

therefore lim
n→∞

f(an) ≤ y so f(c) ≤ y. By item [ii] y < f(bn) for all n therefore y < lim
n→∞

f(bn)

so y ≤ f(c). But f(c) ≤ y and y ≤ f(c) implies y = f(c) thus we’ve found a source for

y. ¤
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