MATH 3210 - SUMMER 2008 - MATERIAL FOR MIDTERM

I have listed the theorems and definitions that you need to know for the midterm. I have intentionally not written them in full detail because I believe that looking them up and writing them down will help you memorize and understand them better. This list is intended to help you organize a complete list yourselves, without forgetting any of the material. Notice that for most theorems, I require you to know their formulation and their proof. However, I don't require you to know the proof of some of the more complicated theorems like Bolzano-Weierstrauss. However, you will have to know the statement by heart, and how to use it.

- (1) For any x < y there are integer n, m such that $x < \frac{m}{n} < y$. For any x < y there are integer k, l such that $x < \frac{k}{\sqrt{2l}} < y$.
- (2) Newton's binomial theorem (don't need to know the proof).
- (3) Definition of bounded sets, infimum, superimum, minimum, maximum.
- (4) Given a set know how to find the sup/inf/max/min and prove using the definition that they are indeed what you claim them to be.
- (5) If A is bounded below then $-A = \{-a \mid a \in A\}$ is bounded above and $\sup(-A) = -\inf(A)$
- (6) If A is bounded above then $B = \{a + 2 \mid a \in A\}$ is bounded above and $\sup B = \sup A + 2$
- (7) Definition of a converging sequence (to a finite limit)
- (8) Given an example of a sequence a_n know how to prove using the definition that a_n converges.
- (9) Definition of $\lim_{n\to\infty} a_n \neq L$ and definition of a divergent sequence.

- (10) Given a sequence which doesn't converge to L, know how to prove this using the definition.
- (11) Given a divergent sequence know how to show that it doesn't converge to any limit.
- (12) Know how to prove that if a_n converges then it is bounded.
- (13) Know the formulation of the main limit theorem. Know how to prove that $ca_n \to ca$, $a_n + b_n \to a + b$.
- (14) Know how to prove that if $a_n \to 0$ and b_n is bounded then $a_n b_n \to 0$
- (15) If $a_n \to a > 0$ then there is an N s.t. $\forall n > N$: $a_n > 0$. know it and consequences.
- (16) Know the proof and formulation of the sandwich theorem.
- (17) Definition of a monotonic sequence.
- (18) formulation and proof of the monotone convergence theorem.
- (19) Given a sequence that is defined inductively, know how to find its limit and prove that it converges (usually need induction).
- (20) formulation of the inequality of the means
- (21) $(1+\frac{1}{n})^n$ converges (don't need to memorize proof).
- (22) Definition of a subsequence.
- (23) Know the formulation: every sequence has a monotonic subsequence.
- (24) Definition of partial limits, given a sequence know how to find all the partial limits.
- (25) know formulation and proof: if $a_n \to a$ then $a_{n_k} \to a$ for every subsequence.
- (26) know the formulation of the Bolzano-Weierstrauss theorem.
- (27) know the formulation of the nested intervals theorem.
- (28) definition of infinite limits.