Homework 2: More on the hyperbolic plane

Let $a, b \in \overline{U}$, we denote the hyperbolic geodesic between them by [a, b]. For any set $X \subset U$ the r neighborhood of X is

 $N_r(X) = \{ y \in U \mid \exists x \in X \text{ so that } d(x, y) < r \}$

Definition 1. A geodesic triangle $\Delta(a, b, c)$ is δ -thin if $[a, b] \subseteq N_{\delta}([b, c] \cup [c, a]), [b, c] \subseteq N_{\delta}([a, b] \cup [a, c]), [a, c] \subseteq N_{\delta}([b, c] \cup [a, b]).$

- 1. Let $g_1 : \mathbb{R} \to U$ be $g_1(t) = ie^t$ and $g_2 : [0, \pi] \to U$ be $g_2(t) = e^{it}$. Describe $N_r(\operatorname{Im} g_1)$ and $N_r(\operatorname{Im} g_2)$.
- 2. What is the hyperbolic distance from i to 2i + 1.
- 3. Show that there exists a constant $\delta > 0$ so that all hyperbolic triangles are δ thin. Find the minimal δ that works. (Hint: first show for ideal triangles).
- 4. Generalize Gauss-Bonnet's theorem to polygons with n sides. That is, if P is a convex polygon with $n \ge 3$ sides and with angles $\alpha_1, \ldots, \alpha_n$. Find a formula for the area depending only on the angles.
- 5. Prove that hyperbolic isometries preserve Euclidean angles.