Homework 5: Riemann Surfaces.

- 1. Consider $\hat{\mathbb{C}}$ with the following coordinate neighborhoods: $U_0 = \mathbb{C}, \phi_0(z) = z, U_\infty = \mathbb{C} \setminus 0$ and $\phi_\infty(z) = \frac{1}{z}$.
 - (a) Show that this is a Riemann Surface.
 - (b) Let X denote $\hat{\mathbb{C}}$ with another Riemann structure given by $\phi_0(z) = \bar{z}$ and $\phi_{\infty}(z) = \frac{1}{\bar{z}}$. Prove that this is a Riemann structure and that it is biholomorphically equivalent to $\hat{\mathbb{C}}$.
 - (c) Is $\hat{\mathbb{C}}$ biholomorphically equivalent to $(\mathbb{C}, \mathrm{id})$ or to D the unit disc in \mathbb{C} with the inclusion as a coordinate neighborhood? Is \mathbb{C} equivalent to D?
- 2. Consider R the region in \mathbb{C} bounded by the following geodesics: [0, 2], [2, 2+i], [2+i, 1+i], [1+i, 1+2i], [1+2i, 2i], [2i, 0]. Let M be the quotient surface obtained by identifying parallel sides of R. For example, [0, i] is identified with [2, 2+i] via the map f(z) = z + 2, and [i, 2i] is identified with [1+i, 1+2i] by the map g(z) = z + 1 etc
 - (a) By the classification of surfaces, M is homeomorphic to either a sphere, a connected sum of n tori, or a connected sum of n real projective planes. Which surface is M?
 - (b) What points of R are identified with 0 under this gluing?
 - (c) What does a neighborhood of $\frac{i+1}{2}$ in M look like? Describe a neighborhood of $\frac{1}{2}$ and a neighborhood of 0 in M.
 - (d) Prove that M is a Riemann Surface. That is, find charts (U_j, ϕ_j) which are homeomorphisms from U_j to some open subset D_j in \mathbb{C} . Check that the transition maps are holomorphic.
- 3. Let R be a Riemann surface and \tilde{R} a topological cover of R.
 - (a) Show that there is a conformal structure on \tilde{R} so that the covering map $p: \tilde{R} \to R$ is holomorphic.
 - (b) Recall that $\pi_1(R)$ acts on \tilde{R} by covering translations. Prove that if $t_{\gamma}: \tilde{R} \to \tilde{R}$ is a covering translation then it is a biholomorphic map (holomorphic with a holomorphic inverse).