Previous: fitdsm Up: ../plot79_f.html Next: fitk1


FITIN

       SUBROUTINE  FITIN (X, Y, L, U, V, N)
 C$    (Interpolation of a Single Function)
 C$    This subroutine interpolates, from  values of the  function
 C$    given as ordinates of input data points in an X-Y plane and
 C$    for a given set  of X values (abscissas),  the values of  a
 C$    single-valued function Y = Y(X).
 C$
 C$    The input arguments are:
 C$
 C$    X  = Array of dimension L storing the X values (abscissas)
 C$         of input data points (in ascending order)
 C$    Y  = Array of dimension L storing the Y values (ordinates)
 C$         of input data points
 C$    L  = Number of input data points (must be 2 or greater)
 C$    U  = Array of dimension N storing the X values (abscissas)
 C$         of desired points
 C$    N  = Number of points at which interpolation of the Y value
 C$         (ordinate) is desired (must be 1 or greater)
 C$
 C$    The output argument is:
 C$
 C$    V  = Array of dimension N where the interpolated Y
 C$         values (ordinates) are to be displayed
 C$
 C$    Author:  Hiroshi Akima,  "Interpolation  and  Smooth  Curve
 C$             Fitting Based on Local Procedures", Comm.  ACM 15,
 C$             914-918 (1972), and "A New Method of Interpolation
 C$             and  Smooth   Curve   Fitting   Based   on   Local
 C$             Procedures", J. ACM 17, 589-602 (1970).
 C$
 C$    Corrections: M.R. Andersen, "Remark on Algorithm 433",
 C$                 ACM Trans. on Math. Software, 2, 208 (1976).
 C$
 C$    Additional corrections: N.H.F. Beebe, "Remark on Algorithm
 C$                            433", ACM Trans. on Math. Software,
 C$                            to be published (198x).
 C$
 C$    This routine  has  been  subjected  to  the  University  of
 C$    Colorado DAVE  Global Data  Flow Analysis  System, and  all
 C$    data  paths  leading  to  possible  use  of   uninitialized
 C$    variables have been shown to be impossible paths.   (N.H.F.
 C$    Beebe, University of Utah, 22-NOV-80)
 C$    (25-SEP-84)